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Continuous Random Variables

@ So far we have considered discrete random variables that can take on a finite or
countably infinite number of values.

@ In applications, we are often interested in random variables that can take on an
uncountable continuum of values; we call these continuous random variables.

Definition (Continuous Random Variable)

A continuous random variable is a random variable with an interval (either finite or
infinite) of real numbers for its range.

For Examples:
@ The time until the occurrence of the next phone call at my office;

@ The lifetime of a battery;

@ The height of a randomly selected maple tree;
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Probability Density Functions
Definition

For a continuous random variable X, a probability density function (pdf) is a function
such that

Q f(x) 0.
Q /7 f(x)=1.

Q@ Pla< X <b)= [Pf(x)

fix)
Pla<X<b)

a b x

Figure: Probability determined from the area f(x)
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Probability Density Functions

@ For a continuous random variable X and any value x,

p(X=x)=0.

@ If X is a continuous random variable, for any x; and xz,

P(X1SXSXQ):P(M§X<X2)=P(X1<XSX2):P(X1<X<X2)
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Probability Density Functions
Example

Suppose that f(x) = 555(8x — x2) for 0 < x < 8. Determine the constant c.
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Probability Density Functions

Example

For the previous example, determine the following:

Q@ P(X<2).

Q@ P(X > 6).

Q P(2< X <6).
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Probability Density Functions

Example
For the previous example, determine a such that P(X < a) = 0.95.
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Probability Density Functions
Example

The probability density function of the time to failure of an electronic component in a
copier (in hours) is
1

000
10008 x>0

f(x) =

Determine the probability that
@ A component lasts more than 3000 hours before failure.

@ A component fails in the interval from 1000 to 2000 hours.

Monjed H. Samuh — PPU Prob & Stat — Term 192 2019/2020




Probability Density Functions

Example

In the previous example, determine the number of hours at which 10% of all
components have failed.

Monjed H. Samuh — PPU Prob & Stat — Term 192 2019/2020 10/42




Cumulative Distribution Functions

Definition
The cumulative distribution function (cdf) of a continuous random variable X is

Fx)=P(X<x)= ) f(u)du, —oo < x < 0.

—o0

The cdf gives the
@ proportion of population with value less than x.

© probability of having a value less than x.

For example:

If F(x) is the cdf for the age in months of fish in a lake, then F(10) is the probability a
random fish is 10 months or younger.
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Cumulative Distribution Functions

Properties of F(x):
@ F(x) goesto 0 as x gets smaller:

lim F(x) = 0.

X——00

@ Conversely:
lim F(x)=1.

X—r00

© F(x) is non-decreasing.
e The derivative is a probability density function, which cannot be negative.

o Also, F(4) can’t be less than F(3), for example.
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Cumulative Distribution Functions

Example
Suppose the cumulative distribution function of the random variable X is

0 if x < -2
F(x)={ 025x+05 if —2<x<2 |
1 if x >2
Determine the following
Q@ P(X < 1.8).
Q@ P(X > —-1.5).

Q P(-1<X<1).

©Q the pdf of x.
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Cumulative Distribution Functions
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Cumulative Distribution Functions

Example
Life expectancy (in days) of electronic component has probability density function,

f(x):%, x>1.

@ Find the cdf for the life expectancy.

v
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Cumulative Distribution Functions

Example

The cumulative distribution function of the random variable X, the time (in days) from
the diagnosis age until death for one population of Covid-19 patients, is as follows:

0 ifx<0
F(x) = { :

.2 .
1 - 003 if x>0

@ Find the probability that a randomly selected person from this population survives
at least 12 days.

@ Find the median of X.
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Mean and Variance of a Continuous Random Variable

Definition (Mean and Variance of a Continuous Random Variable)

@ Suppose X is a continuous random variable with probability density function f(x).

The mean or expected value of X, denoted as p or E(X), is

uw=EX)= /_oo xf(x)dx.

@ The variance of X, denoted as V(X) or o2 is

o® = E(X —p)? = E(X?) — 1 = /m XPf(x)dx — 2.

—o0

@ The standard deviation of X is o = v/o2.
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Mean and Variance of a Continuous Random Variable

Example

Suppose f(x) = 1.5x%, —1 < x < 1. Determine the
@ mean.

@ variance.

@ standard deviation.
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Mean and Variance of a Continuous Random Variable

Example

The probability density function of the weight of packages delivered by a post office is
f(x) = 6;%, 1 < x < 70 pounds.

@ Determine the mean and variance of weight. Ans. 4.3101, 16.423.

© Determine the probability that the weight of a package exceeds 50 pounds. Ans.
0.0058.
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Continuous Uniform Distribution

Definition (Continuous Uniform Distribution)
A continuous random variable X with probability density function

A
 b-a

is a continuous uniform random variable.

f(x) a<x<hb,

Definition (Mean and Variance)

If X is a continuous uniform random variable over a < x < b, then

a+b

uw=EX)= 5
_ _(b-2a)?
o? = V(X) =57
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Continuous Uniform Distribution

The cumulative distribution function of a continuous uniform random variable is
obtained by integration.

0 ifx<a
Fix)=< £ ifas<x<b ,
1 iftx>b

Proof:

Monjed H. Samuh — PPU

Prob & Stat — Term 192

2019/2020 21/42



Continuous Uniform Distribution

Example
Suppose X has a continuous uniform distribution over the interval [-1, 1].
@ Determine the mean, variance, and standard deviation of X. Ans. 0, 1/3, 0.577.

@ Whatis P(X < 0). Ans. 0.5.

© Determine the value for z such that P(—z < X < z) = 0.90. Ans. 0.90.

© Determine the cumulative distribution function.
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Continuous Uniform Distribution
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Continuous Uniform Distribution
Example

Suppose the time it takes a data collection operator to fill out an electronic form for a
database is uniformly between 1.5 and 2.2 minutes.

@ What is the mean and variance of the time it takes an operator to fill out the form?

Ans. 1.85 min, 0.0408 minZ.

© What is the probability that it will take less than two minutes to fill out the form?
Ans. 0.7143.

© Determine the cumulative distribution function of the time it takes to fill out the
form.
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Continuous Uniform Distribution
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Normal Distribution
@ Most widely used distribution of a random variable.
@ Two parameters completely define a normal probability density function, ; and o2.

@ The probability density function is given by:

@ 1 is the expected value (mean), or center of the distribution (—oco < p < 00).
@ o2 is the variance of the distribution (¢ > 0).
@ Normal distribution is also referred to as a Gaussian distribution.

@ Notation: X ~ N(u, o?).
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Normal Distribution

Curve is bell-shaped

and symmetric

LN

m
Value

Figure: Normal probability density is symmetric about the mean p
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Normal Distribution

a VAN

wi=15

Figure: Normal probability density functions for selected values of the parameters 1 and o2
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Normal Distribution

f(x)

10 13 x

Figure: Probability that X>13 for a normal random variable with ; = 10 and o2 = 4
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Normal Distribution

flx) )

p-3c U-20 p-o L L+o pu+ 20 p+3c x
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Figure: Probabilities associated with a normal distribution
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Normal Distribution

Definition (Standard Normal Distribution)

@ A normal random variable with , = 0 and o = 1 is called a standard normal
random variable and is denoted as Z.

@ The cumulative distribution function of a standard normal random variable is
denoted as
d(z) = P(Z < 2).

@ If X ~ N(u,0o?),then Z ~ N(0, 1), where Z = =&,

@ The pdf of Z is given by

f(2) = \/% exp{—%zz}.
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Normal Distribution

@ Appendix Table Ill (Page 709) provides probabilities of the form ®(z) = P(Z < z).

@ The use of Table Il to find ®(1.5) = P(Z < 1.5) is illustrated in the following figure.

P(Z < 1.5) = ®(1.5)

= shaded area F ‘ 0.00 0.01 0.02 0.03

0 | 0.50000 0.50399 0.50398 0.51197

1.5 | 0.93319 0.93448 0.93574 0.93699
0 1.5 z

Figure: Standard normal probability density function
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Normal Distribution

Table 1l Cumularive Seandard Normal Distribusion (comemed)

0w
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0738004

0
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Normal Distribution

Example

Assume Z has a standard normal distribution. Determine the following.
@ P(Z <1.32). Ans. 0.90658.

@ P(Z > 1.45). Ans. 0.07353.

Q@ P(Z > —2.15). Ans. 0.98422.

©Q P(-2.34 < Z < 1.76). Ans. 0.95116.

@ Determine z, such that P(Z < z,) = 0.9. Ans. 1.28.

© Determine z, such that P(Z > z) = 0.1. Ans. 1.28.

@ Determine z, such that P(—1.24 < Z < z) = 0.8. Ans. 1.33.

© Determine z, such that P(—zy < Z < z) = 0.9973. Ans. 3.00.
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Normal Distribution

Suppose X is a normal random variable with mean ., and variance 2. Then,

g g

P(ng):P(ugﬂ):P(Zgz)

where Z is a standard normal random variable, and z = X%“ is the z-value obtained by
standardizing X.
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Normal Distribution
Example

Assume X is normally distributed with a mean of 10 and a standard deviation of 2.
Determine the following:

@ P(X < 13). Ans. 0.841345.

Q P(2 < X < 4). Ans. 0.00132.

© Determine the value for x such that P(X > x) = 0.5. Ans. 10.

@ Determine the value for x such that P(—x < X — 10 < x) = 0.99. Ans. 5.16.

Monjed H. Samuh — PPU Prob & Stat — Term 192

2019/2020



Normal Distribution
Example

The time until recharge for a battery in a laptop computer under common conditions is
normally distributed with a mean of 260 minutes and a standard deviation of 50
minutes.

@ What is the probability that a battery lasts more than four hours? Ans. 0.6554.

@ What are the quartiles (the 25% and 75% values) of battery life? Ans. 226.2755,
293.7245.
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Exponential Distribution

Definition (Exponential Distribution)

@ The random variable X that equals the distance between successive events of a
Poisson process with mean number of events A > 0 per unit interval is an
exponential random variable with parameter A. The probability density function
of Xis

f(x) = Aexp{—=Xx}, x>0.

@ The mean of X is

@ The variance of X is
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Exponential Distribution
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Figure: Probability density function of exponential random variables for selected values of A
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Exponential Distribution

@ Lack of memory property: For an exponential random variable X,
PX<t+blX>H)=PX<b).

@ Poisson versus Exponential: The two distributions are distinct, but both relate to
the same process.

© Given a POISSON PROCESS:
@ the number of events in a given time period has a POISSON DISTRIBUTION.
@ the following have an EXPONENTIAL DISTRIBUTION:

@ The time until the first event.
@ The time from now until the next occurrence of an event.

© The time interval between two successive events.
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Exponential Distribution

Example

The time between arrivals of taxis at a busy intersection is exponentially distributed
with a mean of 10 minutes.

@ What is the probability that you wait longer than one hour for a taxi? Ans. 0.0025.

@ Suppose you have already been waiting for one hour for a taxi. What is the
probability that one arrives within the next 10 minutes? Ans. 0.6321.

© Determine x such that the probability that you wait less than x minutes is 0.90.
Ans. 18.97.
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Exponential Distribution

Example

Suppose that the log-ons to a computer network follow a Poisson process with an
average of three counts per minute.

@ What is the mean time between counts? Ans. 1/3.

© Determine the time x such that the probability of at least one count occurs before
time x minutes is 0.95. Ans. —3In(0.05) = 8.987197.

© Determine the length of an interval of time such that the probability of at least one
count occurs in the interval is 0.95. Ans. 8.987197.
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