2.4 Testing Independence

Example: Study of 159 depression patients

Depression	1	Marital Status			
	Single	Married	Wid/Div		
Severe	16	22	19	57	
Moderate	29	33	14	76	
Mild	9	14	3	26	
Total	54	69	36	159	

Expected Counts

 $\mathsf{H}_0: \ X \ \text{and} \ Y \ \text{are independent} \ \text{vs} \ \ \mathsf{H}_a: \ X \ \text{and} \ Y \ \text{are dependent} \\ \mathsf{H}_0 \ \text{means that for all} \ (i,j)$

$$P(X = i, Y = j) = P(X = i)P(Y = j)$$
$$\pi_{ij} = \pi_{i+}\pi_{+j}$$

Expected frequency is

$$\mu_{ij} = \text{mean of dist. of cell count } n_{ij}$$
$$= n\pi_{ij}$$
$$f = n\pi_{i+}\pi_{+i} \text{ under } H_0$$

MLEs under H_0 are

$$\widehat{\mu}_{ij} = n\widehat{\pi}_{i+}\widehat{\pi}_{+j} = n\left(\frac{n_{i+}}{n}\right)\left(\frac{n_{+j}}{n}\right) = \frac{n_{i+}n_{+j}}{n}$$
$$= \frac{\text{row total} \times \text{column total}}{\text{overall total}}$$

 $\hat{\mu}_{ij}$'s are called estimated expected frequencies (or simply expected counts).

Chapter 2B - 2

Chapter 2B - 1

Expected Counts for the Depression Example

Depression	Single	Marital Status Single Married Wid/Div				
Severe	$\frac{57 \times 54}{159} = 19.37$	$\frac{57 \times 69}{159} = 24.74$	$\frac{57 \times 36}{159} = 12.91$	57		
Moderate	$\frac{76 \times 54}{159} = 25.81$	$\frac{76 \times 69}{159} = 32.98$	$\frac{76 \times 36}{159} = 17.21$	76		
Mild	$\frac{26 \times 54}{159} = 8.83$	$\frac{26 \times 69}{159} = 11.28$		26		
Column Total	54	69	36	159		

Note the expected cell counts may NOT be whole numbers.

Pearson's Chi-Squared Test of Independence

$$X^2 = \sum_{ij} \frac{(n_{ij} - \widehat{\mu}_{ij})^2}{\widehat{\mu}_{ij}} = \sum_{\text{all cells}} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

 X^2 has a large-sample chi-squared dist. under H₀, with

df = (I-1)(J-1)

where I = number of rows, J = number of columns.

observed value of the χ^2 -statistic

(See p. 343 of text for the Chi-square Table)

Note: chi-squared dist. has mean = df, $\sigma = \sqrt{2 \times df}$, is right-skewed and becomes more bell-shaped as df. increases. Chapter 2B - 4

Back to the Depression Example

The observed counts and the expected counts (in parentheses):

Depression	N	/larital Stat	us	
	Single	Married	Wid/Div	Total
Severe	16	22	19	57
	(19.36)	(24.74)	(12.90)	
Moderate	29	33	14	76
	(25.81)	(32.98)	(17.21)	
Mild	9	14	3	26
	(8.83)	(11.28)	(5.89)	
Total	54	69	36	159

The observed value of the χ^2 test statistic is

$$X^{2} = \frac{(16 - 19.36)^{2}}{19.36} + \frac{(22 - 24.74)^{2}}{24.74} + \ldots + \frac{(3 - 5.89)^{2}}{5.89}$$

= 6.83

Likelihood-Ratio Test of Independence

Test statistic

$$G^{2} = -2 \log \left(\frac{\text{maximized likelihood when H}_{0} \text{ true}}{\text{maximized likelihood generally}} \right)$$
$$= 2 \sum_{ij} n_{ij} \log \left(\frac{n_{ij}}{\widehat{\mu}_{ij}} \right)$$
$$= 2 \sum_{\text{all cells}} \text{observed} \times \log \left(\frac{\text{observed}}{\text{expected}} \right)$$

Large sample dist. of G^2 under H₀ is also approx. chi-squared df = (I - 1)(J - 1).

The table is 3×3 , so

$$df = (I - 1)(J - 1) = 2 \times 2 = 4$$

p-value = $P(X^2 > 6.83) = 0.145$

The evidence against H_0 is weak:

it is not strong enough to say the level of depression is associated (dependent) with marital status.

Chapter 2B - 6

Back to the Depression Example

Depression	N	Marital Status					
	Single	Married	Wid/Div	Total			
Severe	16	22	19	57			
	(19.36)	(24.74)	(12.90)				
Moderate	29	33	14	76			
	(25.81)	(32.98)	(17.21)				
Mild	9	14	3	26			
	(8.83)	(11.28)	(5.89)				
Total	54	69	36	159			

The likelihood ratio chi-squared statistic is

$$G^{2} = 2\left[16\log\left(\frac{16}{19.36}\right) + 22\log\left(\frac{22}{24.74}\right) + \ldots + 3\log\left(\frac{3}{5.89}\right)\right] \approx 6.80$$

df = 4, *P*-value pprox 0.147

Degrees of Freedom for Likelihood Ratio Test (LRT)

df for LRT = # parameters in general – # parameters under H₀

Example (Chi-squared test of independence)

Independence: H₀: $\pi_{ij} = \pi_{i+}\pi_{+j}$

$$\sum_{ij} \pi_{ij} = 1, \quad \sum_{i} \pi_{i+} = 1, \quad \sum_{j} \pi_{+j} = 1$$

- ▶ In general there are IJ 1 free parameters $\{\pi_{ij}\}$: If we know IJ 1 of the π_{ij} , then we know the last one because they must add to 1.
- ▶ Under H₀, there are (I 1) + (J 1) free parameters: (I 1) free π_{i+} and (J 1) free π_{+j} . They determine the π_{ij} under H₀.

Thus

$$df = (IJ - 1) - [(I - 1) + (J - 1)]$$

= (I - 1)(J - 1)
Chapter 2B - 9

Definition of Standardized (or Adjusted) Residuals

$$r_{ij} = \frac{n_{ij} - \widehat{\mu}_{ij}}{\sqrt{\widehat{\mu}_{ij}(1 - p_{i+})(1 - p_{+j})}}$$

Example:

Depression		Marital Status				
	Single	Married	Wid/Div			
Severe	16	22	19	57		
Moderate	29	33	14	76		
Mild	9	14	3	26		
Total	54	69	36	159		

$$n_{11} = 16, \quad \hat{\mu}_{11} = \frac{57 \times 54}{159} \approx 19.36$$
$$r_{11} = \frac{16 - 19.36}{\sqrt{19.36(1 - \frac{57}{159})(1 - \frac{54}{159})}} \approx -1.17$$

Remarks About X^2 and G^2

- If all $n_{ij} = \hat{\mu}_{ij}$, then $X^2 = 0$, $G^2 = 0$.
- ► The larger the value of X² or G², the stronger the evidence against H₀
- The sampling distribution of X² converges to χ² faster than that of G², but X² and G² are usually similar if most μ_{ij} > 5.
- ► These tests treat X and Y as nominal: reordering rows or columns leaves X², G² unchanged.

Sec. 2.5 (we skip) presents tests of independence for ordinal variables. We'll introduce more powerful tests for ordinal variable in Ch. 6.

Chapter 2B - 10

Standardized Residuals for Depression Data

Depression	Marital Status				
-	Single Married Wid/Div				
Severe	-1.17	-0.91	2.41		
Moderate	1.07	0.01	-1.22		
Mild	0.08	1.18	-1.48		

Under H₀: independence, r_{ij} is approx. N(0, 1)

As all r_{ij} 's are < 2 or 3 in magnitude, none of the cells show very strong evidence of association.

Getting Tabled Data into R

Depression	Marital Status				
	Single	Married	Wid/Div		
Severe	16	22	19		
Moderate	29	33	14		
Mild	9	14	3		

By default R reads a matrix by columns.

```
> depr = matrix(c(16,29,9,22,33,14,19,14,3), nrow=3)
> dimnames(depr) =
    list(Depression=c("Severe", "Moderate", "Mild"),
          Marital=c("Single", "Married", "Wid.Div"))
> depr = as.table(depr)
> depr
          Marital
Depression Single Married Wid.Div
 Severe
               16
                       22
                               19
 Moderate
                       33
               29
                               14
                9
                       14
                                3
 Mild
```

Chapter 2B - 13

The data could also be read from the columns of a text file or a comma-separated (csv) file, which could be created with a text editor or a spreadsheet program. The text or csv file should have a separate row for each combination of factor levels.

Thus a text file depr.txt containing

```
Depression Marital Freq
   Severe Single
                   16
 Moderate Single
                   29
     Mild Single
                    9
   Severe Married
                   22
 Moderate Married
                  33
     Mild Married 14
   Severe Wid.Div 19
 Moderate Wid.Div 14
     Mild Wid.Div
                    3
```

can be read into an R dataframe via

```
> depr.df = read.table("depr.txt", header=TRUE)
```

Once the data are saved as a table as above, we can easily convert them to a data frame:

```
> depr.df = as.data.frame(depr)
> depr.df
  Depression Marital Freq
      Severe Single
1
                      16
2
   Moderate
             Single
                      29
3
       Mild Single
                       9
4
      Severe Married
                      22
5
   Moderate Married
                      33
       Mild Married
6
                      14
7
      Severe Wid.Div
                      19
8
  Moderate Wid.Div
                      14
9
       Mild Wid.Div
                       3
```

Chapter 2B - 14

Ungrouped Data

Sometimes the data are ungrouped, like the data file deprUG.dat, in which, one row corresponds to the record of one patient.

```
Depression Marital
Moderate Married
Severe Wid.Div
Severe Single
Severe Married
Moderate Married
Mild Single
Severe Single
Severe Married
...
Mild Married
```

Again, we first load it into R dataframe via the command read.table()

```
> depr.ug = read.table("deprUG.dat", header=TRUE)
```

Data in a dataframe can be converted to a table using the xtabs() or the table() function.

> xtabs(Freq ~ Depression + Marital, data=depr.df) # Grouped Data Marital Depression Married Single Wid.Div Mild 14 9 3 Moderate 33 29 14 Severe 22 16 19 > xtabs(~ Depression + Marital, data=depr.ug) # Ungrouped Data Marital Depression Married Single Wid.Div Mild 14 9 3 Moderate 33 29 14 22 16 Severe 19 > table(depr.ug) # Ungrouped Data Only Marital Depression Married Single Wid.Div Mild 14 9 3 Moderate 33 29 14 22 16 19 Severe > depr = xtabs(~ Depression + Marital, data=depr.ug)

Note the rows and columns might be reordered. Chapter 2B - 17

Computations on Tables — Conditional Distributions

> prop.table(depr,1) Marital Depression Single Married Wid.Div Severe 0.2807018 0.3859649 0.3333333 Moderate 0.3815789 0.4342105 0.1842105 Mild 0.3461538 0.5384615 0.1153846 > prop.table(depr,2) Marital Depression Single Married Wid.Div Severe 0.29629630 0.31884058 0.5277778 Moderate 0.53703704 0.47826087 0.388888889 Mild 0.16666667 0.20289855 0.08333333 > round(prop.table(depr,2),3) Marital Depression Single Married Wid.Div Severe 0.296 0.319 0.528 Moderate 0.537 0.478 0.389 Mild 0.167 0.203 0.083

Computations on Tables — Marginal Totals

> margin.ta Depression Severe Mo 57		pr, 1) Milo 20		
> margin.ta Marital Single Man 54				
> addmargin	ns(depr) Marital)		
Depression	Single	Married	Wid.Div	\mathtt{Sum}
Severe	16	22	19	57
Moderate	29	33	14	76
Mild	9	14	3	26
Sum	54	69	36	159

Chapter 2B - 18

Computations on Tables — Chi-Square Test for Indep.

> chisq.test(depr)

Pearson's Chi-squared test

data: depr
X-squared = 6.8281, df = 4, p-value = 0.1453

```
> depr.chisq$observed
                                                                                        Marital
> depr.chisq = chisq.test(depr)
                                                                               Depression Single Married Wid.Div
                                                                                                     22
                                                                                 Severe
                                                                                             16
                                                                                                             19
> names(depr.chisq)
                                                                                 Moderate
                                                                                             29
                                                                                                     33
                                                                                                            14
[1] "statistic" "parameter" "p.value"
                                          "method"
                                                                                 Mild
                                                                                              9
                                                                                                    14
                                                                                                              3
[5] "data.name" "observed" "expected"
                                          "residuals"
[9] "stdres"
                                                                               > depr.chisq$expected
                                                                                        Marital
> depr.chisq$statistic
                                                                               Depression
                                                                                            Single Married Wid.Div
X-squared
                                                                                 Severe 19.358491 24.73585 12.905660
6.828129
                                                                                 Moderate 25.811321 32.98113 17.207547
                                                                                 Mild
                                                                                          8.830189 11.28302 5.886792
> depr.chisq$parameter
                                                                               > with(depr.chisq, sum((observed - expected)^2/expected))
df
                                                                               [1] 6.828129
4
                                                                               Likelihood Ratio Test Statistic G^2:
> depr.chisq$p.value
[1] 0.1452544
                                                                               > G2 = with(depr.chisq, 2*sum(observed*log(observed/expected)))
                                                                               > G2
                                                                               [1] 6.799838
```

Chapter 2B - 22

The residuals computed by chisq.test() are the unadjusted (raw) Pearson residuals:

 $\frac{n_{ij} - \widehat{\mu}_{ij}}{\sqrt{\widehat{\mu}_{ij}}}$

Chapter 2B - 21

not the standardized residuals we defined before.

```
> depr.chisq$residuals
         Marital
Depression
                Single
                           Married
                                        Wid.Div
 Severe -0.763323068 -0.550083631 1.696432315
 Moderate 0.627632929 0.003285423 -0.773238674
 Mild
           0.057145449 0.808861129 -1.189806121
> with(depr.chisq, (observed - expected)/sqrt(expected))
         Marital
Depression
                Single
                            Married
                                        Wid.Div
 Severe -0.763323068 -0.550083631 1.696432315
 Moderate 0.627632929 0.003285423 -0.773238674
 Mild 0.057145449 0.808861129 -1.189806121
```

The stdres given by chisq.test() are the *standardized residuals* we defined before

$$r_{ij} = \frac{n_{ij} - \widehat{\mu}_{ij}}{\sqrt{\widehat{\mu}_{ij}(1 - p_{i+})(1 - p_{+j})}}$$

> depr.chis	sq\$stdres Marital		
Depression	Single	Married	Wid.Div
Severe	-1.172764405	-0.912860689	2.408136051
Moderate	1.068978941	0.006044052	-1.216799688
Mild	0.076887954	1.175503738	-1.479091179

2.4.6 Partitioning Chi-squared

Diagnosis	Drugs	No Drug	
Schizophrenia (S)	105	8	<i>df</i> = 3
Affective disorder (A)	12	2	$X^2 = 60.88$
Neurosis (N)	18	19	$G^2 = 67.27$
Personality disorder (P)	47	52	

Parameters:

Test of Independence:

Diagnosis	Drugs	No Drug
S	π_{S}	$1-\pi_S$
A	$\pi_{\mathcal{A}}$	$1-\pi_{\mathcal{A}}$
Ν	π_N	$1-\pi_{N}$
Р	π_P	$1-\pi_P$

 $H_0: \pi_S = \pi_A = \pi_N = \pi_P$ $H_a: \pi_S, \pi_A, \pi_N, \pi_P \text{ not all equal}$

Estimates:

$\begin{aligned} \widehat{\pi}_S &= 105/(105+8) \approx 0.93 \\ \widehat{\pi}_A &= 12/(12+2) \approx 0.86 \\ \widehat{\pi}_N &= 18/(18+19) \approx 0.49 \\ \widehat{\pi}_P &= 47/(47+52) \approx 0.47 \\ \text{Chapter 2B - 25} \end{aligned}$

Partitioning Chi-squared

Sub-Table	<i>X</i> ²	G^2	df
S v.s. A	0.892	0.753	1
Nv.s. P	0.015	0.015	1
(S + A) v.s. $(N + P)$	60.558	66.500	1
Sum over 3 sub-tables	61.465	67.268	3
Full Table	60.879	67.267	3

- ► The *G*² for the 3 sub-tables add up to the *G*² for the full table.
- The sum of X²'s for the 3 sub-tables is close but NOT equal to the X² for the full table.

Partitioning Chi-squared

Testing $\pi_S = \pi_A$:

Diagnosis	Drugs	No Drug	df = 1
S	105	8	$X^2 = 0.89$
А	12	2	$G^2 = 0.75$

Testing $\pi_N = \pi_P$:

Diagr	nosis l	Drugs	No Drug	df = 1
N		18	19	$X^2 = 0.0149$
P		47	52	$G^2 = 0.0149$

Testing $\pi_{S+A} = \pi_{N+P}$:

Diagnosis	Drugs	No Drug	df = 1
S + A	117	10	$X^2 = 60.56$
N + P	65	71	$G^2 = 66.50$

<u>Conclusion</u>: $\pi_S \approx \pi_A$, $\pi_N \approx \pi_P$, but π_S and π_A are significantly different from π_N and π_P . Chapter 2B - 26

Partitioning Chi-squared

- If $X \sim \chi^2_a$ is independent of $Y \sim \chi^2_b$, then $X + Y \sim \chi^2_{a+b}$
- G² statistic for testing independence can be partitioned exactly into components representing certain aspects of the association.
- ▶ Partition of G² is neither unique nor arbitrary.
 - (S v.s. A), (N v.s. P), and (S+A v.s. N+P) is a partition
 - \blacktriangleright Another partition: (S v.s. A), (S+A v.s. N), and (S+A+N v.s. P)
 - ► (S v.s. A), (N v.s. P), and (S v.s. N) is NOT a partition
 - Sub-tables in a partition must be **independent** of each other.
 - The general rule of partitioning Chi-squared is beyond the scope of STAT222.
- Partition of X^2 is NOT exact.

Another Partition of Chi-squared

S v.s A:

Diagnosis	Drugs	No Drug	df = 1
S	105	8	$X^2 = 0.89$
А	12	2	$G^2 = 0.75$

(S + A) v.s. N

Diagnosis	Drugs	No Drug	df = 1
S + A	117	10	$X^2 = 37.21$
Ν	18	19	$G^2 = 31.74$

(S + A + N) v.s. P

Diagnosis	Drugs	No Drug	df = 1
S + A + N	135	29	$X^2 = 35.16$
P	47	52	$G^2 = 34.77$

- For X^2 , $0.89 + 37.21 + 35.16 = 73.26 \neq 60.88$
- ► For G^2 , $0.75 + 31.74 + 34.77 = 67.26 = G^2$ for the full table Chapter 2B 29

What's Wrong? (Problem 2.21 on p.60)

Each subject in a sample of 100 men and 100 women is asked to indicate which of the following factors (one or more) are responsible for increases in teenage crime:

- A . the increasing gap in income between the rich and poor;
- ${\sf B}\,$. the increase in the percentage of single-parent families;
- C . insufficient time spent by parents with their children.

A cross classification of the responses by gender is

Gender	А	В	С
Men	60	81	75
Women	75	87	86

Can we do the chi-squared test of independence to this 2×3 table?

Not A Partition of Chi-squared

S v.s A:

Diagnosis	Drugs	No Drug	df = 1
S	105	8	$X^2 = 0.89$
А	12	2	$G^2 = 0.75$

N v.s. P

Diagnosis	Drugs	No Drug	df = 1
Ν	18	19	$X^2 = 0.0149$
Р	47	52	$G^2 = 0.0149$

S v.s. N

Diag	nosis	Drugs	No Drug	df = 1
0	5	105	8	$X^2 = 37.01$
1	N	18	19	$G^2 = 32.37$

For G^2 , $0.75 + 0.015 + 32.37 = 33.135 \neq 67.26 = G^2$ for the full table, since the 3 sub-tables are NOT independent of each other. Chapter 2B - 30

The Correct Analysis

	A	A
Gender	Yes	No
Men	60	40
Women	75	25
	E	3
Gender	Yes	No
Men	81	19
Women	87	17
	(
Gender	Yes	No
Men	75	25
Women	86	14