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Variable Types

Regression methods are used to analyze data when the response
variable is numerical

• e.g., temperature, blood pressure, heights, speeds, income
• Stat 22200, Stat 22400

Methods in categorical data analysis are used when the response
variable takes categorical (or qualitative) values

• e.g.,
• gender (male, female),
• political philosophy (liberal, moderate, conservative),
• region (metropolitan, urban, suburban, rural)

• Stat 22600

In either case, the explanatory variables can be numerical or
categorical.
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Two Types of Categorical Variables

Nominal : unordered categories, e.g.,

• transport to work (car, bus, bicycle, walk, other)
• favorite music (rock, hiphop, pop, classical, jazz,

country, folk)

Ordinal : ordered categories

• patient condition (excellent, good, fair, poor)
• government spending (too high, about right, too

low)

We pay special attention to — binary variables: success or failure

for which nominal-ordinal distinction is unimportant.
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Review of Binomial and
Multinomial Distributions

Binomial Distributions (Review)

If n Bernoulli trials are performed:

• only two possible outcomes for each trial (success, failure)

• π = P(success), 1 − π = P(failure), for each trial,

• trials are independent

• Y = number of successes out of n trials

then Y has a binomial distribution, denoted as

Y ∼ binomial (n, π).

The probability function of Y is

P(Y = y) =
(
n
y

)
πy(1 − π)n−y , y = 0, 1, . . . , n.

where
(
n
y

)
=

n!
y! (n − y)!

is the binomial coefficient and

m! = “m factorial” = m × (m − 1) × (m − 2) × · · · × 1.

Note that 0! = 1. 4

Example

Vote (Dem, Rep). Suppose π = Pr(Dem) = 0.4.

Sample n = 3 voters, let y = number of Dem votes among them.

P(y) =
n!

y!(n − y)!
πy(1 − π)n−y =

3!
y!(3 − y)!

(0.4)y(0.6)3−y

P(0) =
3!

0!3!
(0.4)0(0.6)3 = (0.6)3 = 0.216

P(1) =
3!

1!2!
(0.4)1(0.6)2 = 3(0.4)(0.6)2 = 0.432

y P(y)
0 0.216
1 0.432
2 0.288
3 0.064

total 1
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R Codes

> dbinom(x=0, size=3, p=0.4)

[1] 0.216

> dbinom(0, 3, 0.4)

[1] 0.216

> dbinom(1, 3, 0.4)

[1] 0.432

> dbinom(0:3, 3, 0.4)

[1] 0.216 0.432 0.288 0.064

> plot(0:3, dbinom(0:3, 3, .4), type = "h", xlab = "y", ylab = "P(y)")
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Facts About the Binomial Distribution

If Y is a binomial (n, π) random variable, then

• E(Y) = nπ
• σ(Y) =

√
Var(Y) =

√
nπ(1 − π),

• Binomial (n, π) can be approx. by Normal (nπ, nπ(1 − π))
when n is large (nπ > 5 and n(1 − π) > 5).

binomial(n = 8, π = 0.2) binomial(n = 25, π = 0.2)
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Multinomial Distribution — Generalization of Binomial

If n trials are performed:

• in each trial there are c > 2 possible outcomes (categories)

• πi = P(category i), for each trial,
∑c

i=1 πi = 1

• trials are independent

• Yi = number of trials fall in category i out of n trials

then the joint distribution of (Y1,Y2, . . . ,Yc) has a multinomial
distribution, with probability function

P(Y1 = y1,Y2 = y2, . . . ,Yc = yc) =
n!

y1! y2! · · · yc!
π

y1
1 π

y2
2 · · · π

yc
c

where 0 ≤ yi ≤ n for all i and
∑

i yi = n.
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Example

Suppose proportions of individuals with genotypes AA , Aa, and aa
in a large population are

(πAA , πAa , πaa) = (0.25, 0.5, 0.25).

Randomly sample n = 5 individuals from the population.

The chance of getting 2 AA’s, 2 Aa’s, and 1 aa is

P(YAA = 2,YAa = 2,Yaa = 1) =
5!

2! 2! 1!
(0.25)2(0.5)2(0.25)1

=
5 · 4 · 3 · 2 · 1
(2 · 1)(2 · 1)(1)

(0.25)2(0.5)2(0.25)1 ≈ 0.117

and the chance of getting no AA, 3 Aa’s, and 2 aa’s is

P(YAA = 0,YAa = 3,Yaa = 2) =
5!

0! 3! 2!
(0.25)0(0.5)3(0.25)2

=
5 · 4 · 3 · 2 · 1

(1)(3 · 2 · 1)(2 · 1)
(0.25)0(0.5)3(0.25)2 ≈ 0.078
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Facts About the Multinomial Distribution

If (Y1,Y2, . . . ,Yc) has a multinomial distribution with n trials and
category probabilities (π1, π2, · · · , πc), then

• E(Yi) = nπi for i = 1, 2, . . . , c

• σ(Yi) =
√

Var(Yi) =
√

nπi(1 − πi),

• Cov(Yi ,Yj) = −nπiπj
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Likelihood and Maximum
Likelihood Estimation

A Probability Question

A push pin is tossed n = 5 times. Let Y be the number of times the
push pin lands on its head. What is P(Y = 3)?

Answer. As the tosses are indep., Y is binomial (n = 5, π)

P(Y = y; π) =
n!

y! (n − y)!
πy(1 − π)n−y

where π = P(push pin lands on its head in a toss).

If π is known to be 0.4, then

P(Y = 3; π) =
5!

3!2!
(0.4)3(0.6)2 = 0.2304.
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A Statistics Question

Suppose a push pin is observed to land on its head Y = 8 times in
n = 20 tosses. Can we infer about the value of

π = P(push pin lands on its head in a toss)?

The chance to observe Y = 8 in n = 20 tosses is

P(Y = 8; π) =


(
20
8

)
(0.3)8(0.7)12 ≈ 0.1143 if π = 0.3(

20
8

)
(0.6)8(0.4)12 ≈ 0.0354 if π = 0.6

It appears that π = 0.3 is more likely than π = 0.6, since the former
gives a higher prob. to observe the outcome Y = 8.
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The probability

P(Y = y; π) =
(
n
y

)
πy(1 − π)n−y = `(π|y)

viewed as a function of π, is called the likelihood function, (or just
likelihood) of π, denoted as `(π|y).

It is a measure of the “plausibility” for a value being the true value
of π.
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Curves for the likelihood `(π|y) at different values of y for n = 20. 13

Likelihood

In general, suppose the observed data (Y1,Y2, . . . ,Yn) have a joint
probability distribution with some parameter(s) θ

P(Y1 = y1,Y2 = y2, . . . ,Yn = yn) = f(y1, y2, . . . , yn |θ)

The likelihood function for the parameterθ is

`(θ) = `(θ|y1, y2, . . . , yn) = f(y1, y2, . . . , yn |θ).

• Note the likelihood function regards the probability as a
function of the parameter θ rather than as a function of the
data y1, y2, . . . , yn.

• If
`(θ1|y1, . . . , yn) > `(θ2|y1, . . . , yn),

then θ1 appears more plausible to be the true value of θ than
θ2 does, given the observed data y1, . . . , yn.
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Maximum Likelihood Estimate (MLE)

The maximum likelihood estimate (MLE) of a parameter θ is the
value at which the likelihood function is maximized.

Example. If a push pin lands on head Y = 8 times in n = 20
tosses, the likelihood function

`(π|y = 8) =
(
20
8

)
π8(1 − π)12

reach its maximum at π = 0.4, the MLE for π is π̂ = 0.4 given the
data Y = 8.
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Maximizing the Log-likelihood

Rather than maximizing the likelihood, it is usually computationally
easier to maximize its logarithm, called the log-likelihood,

log `(π|y)

which is equivalent since logarithm is strictly increasing,

x1 > x2 ⇐⇒ log(x1) > log(x2).

So
`(π1|y) > `(π2|y) ⇐⇒ log `(π1|y) > log `(π2|y).
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Example (MLE for Binomial)

If the observed data Y ∼ binomial (n, π) but π is unknown, the
likelihood of π is

`(π|y) = p(Y = y |π) =
(
n
y

)
πy(1 − π)n−y

and the log-likelihood is

log `(π|y) = log
(
n
y

)
+ y log(π) + (n − y) log(1 − π).

From calculus, we know a function f(x) reaches its max at x = x0 if
d
dx f(x) = 0 at x = x0 and d2

dx2 f(x) < 0 at x = x0. As

d
dπ

log `(π|y) =
y
π
−

n − y
1 − π

=
y − nπ
π(1 − π).

equals 0 when π = y/n and d2

dπ2 log `(π|y) = − y
π2 −

n−y
(1−π)2 < 0 is

always true, we know log `(π|y) reaches its max when π = y/n. So
the MLE of π is y/n.
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More Facts about MLEs

• If Y1,Y2, . . . ,Yn are i.i.d. N(µ, σ2), the MLE of µ is the sample
mean

∑n
i=1 Yi/n.

• In ordinary linear regression,

Yi = β0 + β1xi1 + · · ·+ βpxip + εi

when the noise εi are i.i.d. normal, the usual least squares
estimates for β0, β1, . . . , βp are MLEs.
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Large Sample Optimality of MLEs

MLEs are not always the best estimators but they have a number
of good properties.

MLEs are

• asymptotically unbiased — the bias of MLE approaches 0 as
the sample size n gets large,

• asymptotically efficient — no other estimates have smaller
limiting variance than the MLE as n gets large

• asymptotically normal — the large sample distribution of the
MLE is approx. normal.

All the above are true under most circumstances, though
sometimes the sample size required can be quite large.

Computation Issues of MLEs. In many cases, the MLEs can not
be solve directly (no analytical expression exists), and numerical
tools are needed to compute the values of the MLEs. 19

Inference for a Binomial Proportion



Inference for a Binomial Proportion

If the observed data Y ∼ binomial (n, π), recall the MLE for π is

π̂ = Y/n.

Recall that since Y ∼ binomial (n, π), the mean and standard
deviation (SD) of Y are respectively,

E[Y ] = nπ, σ(Y) =
√

nπ(1 − π).

The mean and SD of π̂ are thus respectively

E(π̂) = E
(
Y
n

)
=

E(Y)

n
= π,

σ(π̂) = σ

(
Y
n

)
=
σ(Y)

n
=

√
π(1 − π)

n
.

By CLT, as n gets large,
π̂ − π√

π(1 − π)/n
∼ N(0, 1).
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Significance Test for a Binomial Proportion

The text lists 3 different tests for testing

H0: π = π0 v.s. Ha : π , π0 (or 1-sided alternative.)

• Score Test uses the score statistic zs =
π̂ − π0√

π0(1 − π0)/n

• Wald Test uses the Wald statistic zw =
π̂ − π0√
π̂(1 − π̂)/n

• Likelihood Ratio Test: we will explain later

As n gets large,

both zs and zw ∼ N(0, 1),

both z2
s and z2

w ∼ χ
2
1.

based on which, P-value can be computed.
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Example (U.S. in Another World War)

When 2004 General Social Survey asked subjects “do you expect
the U.S. to fight in another world war within the next 10 years?”
460 of 828 subjects answered “yes”. Want to test if π = 0.5 where
π is the proportion of the population that would answered“yes”.

• estimate of π = π̂ = 460/828 ≈ 0.556

• Score statistic zs =
0.556 − 0.5
√

0.5 × 0.5/828
= 3.22,

• Wald statistic zw =
0.556 − 0.5

√
0.556 × 0.444/828

≈ 3.24,
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Example (U.S. in Another World War)

Note that the P-values computed using N(0, 1) or χ2
1 are identical.

> 2*pnorm(3.22,lower.tail=F) #P-value for score test

[1] 0.001281906

> pchisq(3.22ˆ2,df=1,lower.tail=F)

[1] 0.001281906

> 2*pnorm(3.24,lower.tail=F) #P-value for Wald test

[1] 0.001195297

> pchisq(3.24ˆ2,df=1,lower.tail=F)

[1] 0.001195297
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Likelihood Ratio Test (LRT)

Recall the likelihood function for a binomial proportion π is

`(π|y) =
(
n
y

)
πy(1 − π)n−y .

To test H0: π = π0 v.s. Ha : π , π0, let

• `0 be the max. likelihood under H0, which is `(π0|y)

• `1 be the max. likelihood over all possible π, which is `(π̂|y)
where π̂ = y/n is the MLE of π.

Observe that

• `0 ≤ `1 always true

• Under H0, we expect π̂ ≈ π0 and hence `0 ≈ `1.

• `0 � `1 is a sign to reject H0

24

Likelihood Ratio Test Statistic (LRT Statistic)

The likelihood-ratio test statistic (LRT statistic) for testing

H0: π = π0 v.s. Ha : π , π0

equals
−2 log(`0/`1).

• Here log is the natural log

• LRT statistic −2 log(`0/`1) is always nonnegative since `0 ≤ `1

• When n is large, −2 log(`0/`1) ∼ χ
2
1.

• Reject H0 at level α if −2 log(`0/`1) > χ
2
1,α

• P-value = P(χ2
1 > observed LRT statistic)

25

Likelihood Ratio Test Statistic for a Binomial Proportion

Recall the likelihood function for a binomial proportion π is

`(π|y) =
(
n
y

)
πy(1 − π)n−y .

Thus

`0

`1
=

(
n
y

)
π

y
0(1 − π0)

n−y(
n
y

)
( y

n )
y(1 − ( y

n ))
n−y

=

(
nπ0

y

)y (
n (1 − π0)

n − y

)n−y

and hence the LRT statistic is

−2 log(`0/`1) = 2y log
(

y
nπ0

)
+ 2(n − y) log

(
n − y

n (1 − π0)

)
= 2

∑
i=yes,no

Observedi ×

[
log

(
Observedi

Fittedi

)]
where Observedyes = y and Observedno = n − y are the observed
counts, and Fittedyes = nπ0 and Fittedno = n(1 − π0) are the fitted
counts under H0. 26

Example (U.S. in Another World War, Cont’d)

In the survey, 460 answered “yes”, 368 answered “no,” so

Observedyes = 460, Observedno = 368.

Under H0: π = 0.5, we expected half of the 828 subjects, to
answer “yes” and half to answer “no,”

Fittedyes = 828 × 0.5 = 414, Fittedno = 828 − 414 = 414.

Thus the LRT statistic is

2
[
460 log

(
460
414

)
+ 368 log

(
368
414

)]
≈ 10.24

which exceeds the critical value χ2
1,0.05 at level 0.05

> qchisq(0.05, df=1, lower.tail=F)

[1] 3.841459

so H0 is rejected.

The P-value is P(χ2
1 > 10.24), which is

> pchisq(10.24, df=1, lower.tail=F)

[1] 0.001374276

27



Duality of Confidence Intervals and Significance Tests

For a 2-sided significance test of θ, the dual 100(1 − α)%
confidence interval for the parameter θ consisted of all those θ∗

values that a two-sided test of H0: θ = θ∗ is not rejected at level α.

E.g.,

• the dual 90% Wald CI for π is the collection of all π0 such that
a two-sided Wald test of H0: π = π0 having P-value > 10%

• the dual 95% score CI for π is the collection of all π0 such that
a two-sided score test of H0: π = π0 having P-value > 5%

E.g., If the 2-sided P-value for testing H0: π = 0.2 is 6%, then

• 0.2 is in the 95% CI

• but 0.2 is NOT in the 90% CI

28

Wald Confidence Intervals (Wald CIs)

For a Wald test, H0: π = π∗ is not rejected at level α if∣∣∣∣∣∣∣ π̂ − π∗√
π̂(1 − π̂)/n

∣∣∣∣∣∣∣ < zα/2,

so a 100(1 − α)% Wald confidence interval isπ̂ − zα/2

√
π̂(1 − π̂)

n
, π̂+ zα/2

√
π̂(1 − π̂)

n

 .
where, confidence level 90% 95% 99%

zα/2 1.645 1.96 2.58

• learned in Stat220 and Stat234

Drawbacks:

• Wald CI for π collapses if π̂ = 0 or 1.
• Actual coverage prob. for Wald CI is usually much less than

100(1 − α)% if π close to 0 or 1, unless n is quite large.
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Score Confidence Intervals (Score CIs)

For a Score test, H0 π = π∗ is not rejected at level α if∣∣∣∣∣∣∣ π̂ − π∗√
π∗(1 − π∗)/n

∣∣∣∣∣∣∣ < zα/2.

A 100(1 − α)% score confidence interval consists of those π∗

satisfying the inequality above.

Example., if π̂ = 0, the 95% score CI consists of those π∗ satisfying∣∣∣∣∣∣∣ 0 − π∗√
π∗(1 − π∗)/n

∣∣∣∣∣∣∣ < 1.96.

After a few steps of algebra, we can show such π∗’s are those
satisfying 0 < π∗ < 1.962

n+1.962 . Thus the 95% score CI for π when
π̂ = 0 is (

0,
1.962

n + 1.962

)
,

which is NOT collapsing!
30

Score CI (Cont’d)

In Problem 1.18 in the textbook, the end points of the score CI are
shown to be

(nπ̂+ z2/2) ± zα/2
√

nπ̂(1 − π̂) + z2/4
n + z2

where z = zα/2.

• midpoint of the score CI, π̂+z2/2n
1+z2/n , is between π̂ and 0.5.

• better than Wald CIs, that the actual coverage probabilities
are closer to the nominal levels.
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Agresti-Coull Confidence Intervals

Recall the midpoint for a 95% score CI is

y + z2
α/2/2

n + z2
α/2

=
y + 1.962/2
n + 1.962 ≈

y + 2
n + 4

.

This inspires Agresti-Coull correction to the Wald CI that we add 2
successes and 2 failures before computing π̂ and then compute
the Wald CI:

π̂∗ ± zα/2

√
π̂∗(1 − π̂∗)

n + 4
, where π̂∗ =

y + 2
n + 4

.

• simpler formula than score CIs
• also perform reasonably well
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Likelihood Ratio Confidence Intervals (LR CIs)

A LR test will not reject H0 π = π∗ at level α if

−2 log(`0/`1) = −2 log(`(π∗|y)/`(π̂|y)) < χ2
1,α.

A 100(1 − α)% likelihood ratio CI consists of those π∗ with
likelihood

`(π∗|y) > e−χ
2
1,α/2`(π̂|y)

E.g., the 95% LR CI contains those π∗ with likelihood that is at least
e−χ

2
1,0.05/2 = e−3.84/2 ≈ 0.0147 multiple of the max. likelihood.

Likelihood function `(π|y) for n = 20 and y = 8.
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No close form expression for end points of a LR CI.
Can use software to find the end points numerically.
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Example (Political Party Affiliation)

A survey about the political party affiliation of residents in a town
found 4 of 400 in the sample to be Independents.

Want a 95% CI for π = proportion of Independents in the town.

• estimate of π = 4/400 ≈ 0.01

• Wald CI: 0.01 ± 1.96

√
0.01 × (1 − 0.01)

400
≈ (0.00025, 0.01975).

• Agresti-Coull CI: estimate of π is (4 + 2)/(400 + 4) ≈ 0.0149

0.0149 ± 1.96

√
0.0149 × (1 − 0.0149)

404
≈ (0.00306, 0.02665).

• 95% Score CI contains those π∗ satisfying

0.01 − π∗√
π∗(1 − π∗)/400

< 1.96

which is the interval (0.00390.0254).
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R Functions for Tests and CIs for Binomial Proportions

prop.test() performs the score test and computes the score CI.

• Default test is for H0: π = 0.5 vs Ha : π , 0.5
• Uses continuity correction by default.

> prop.test(4,400)

1-sample proportions test with continuity correction

data: 4 out of 400, null probability 0.5

X-squared = 382.2, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.003208199 0.027187351

sample estimates:

p

0.01
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If want a score test of H0: π = 0.02 vs Ha : π , 0.02 without
continuity correction ...

> prop.test(4,400, p=0.02, correct=F)

1-sample proportions test without continuity correction

data: 4 out of 400, null probability 0.02

X-squared = 2.0408, df = 1, p-value = 0.1531

alternative hypothesis: true p is not equal to 0.02

95 percent confidence interval:

0.003895484 0.025426565

sample estimates:

p

0.01

The 95% CI is the same as the score CI we computed before.
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Small Sample Binomial Inference

Example: Medical Consultants for Organ Donors

• People providing an organ for donation sometimes seek the
help of a special “medical consultant” These consultants
assist the patient in all aspects of the surgery, with the goal of
reducing the possibility of complications during the medical
procedure and recovery.

• One consultant tried to attract patients by noting the average
complication rate for liver donor surgeries in the US is about
10%, but her clients have only had 3 complications in the 62
liver donor surgeries she has facilitated.

• Is this strong evidence that her work meaningfully contributes
to reducing complications (and therefore she should be
hired!)?

37

Example: Medical Consultants for Organ Donors (Cont’d)

• H0: π = 0.1 vs. Ha : π < 0.1
• estimate of π is 3/62 ≈ 0.048
• Wald, score, likelihood ratio tests are based on large samples:

only appropriate when numbers of successes and failures are
both at least 10 (or 15), but there were only 3 successes
(having complications) in this example

• For small sample, one can use the exact distribution of the
data — binomial, instead of its normal approximation.

• Under H0: number of complications ∼ Bin(n = 62, π = 0.1)

0 5 10 15 20 25 30

38



Exact Binomial Tests

For conventional large sample tests based on normal
approximation, the lower one sided P-value is the area under the
normal curve below 3

0 5 10 15 20 25 303

For exact binomial tests, the lower one-sided P-value is the area
under the probability histogram below 3.

0 5 10 15 20 25 303
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Exact Binomial Tests

Let X = number of complications among 62 liver donars
∼ Bin(n = 62, π = 0.1) under H0.

P(X = k) =
(
62
k

)
(0.1)k (0.9)62−k

The lower one-sided P-value for the exact binomial test for the
consultant’s claim is

P-value = P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

=

(
62
0

)
(0.1)0(0.9)62 +

(
62
1

)
(0.1)1(0.9)61

+

(
62
2

)
(0.1)2(0.9)60 +

(
62
3

)
(0.1)3(0.9)59

= 0.0015 + 0.0100 + 0.0340 + 0.0755

= 0.1210

The evidence is not strong enough to support the consultant’s
claim.
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Exact Binomial Tests in R

The R function to do exact binomial test is binom.test().

> binom.test(3, 62, p=0.1, alternative="less")

Exact binomial test

data: 3 and 62

number of successes = 3, number of trials = 62, p-value = 0.121

alternative hypothesis: true probability of success is less than 0.1

95 percent confidence interval:

0.0000000 0.1203362

sample estimates:

probability of success

0.0483871

The p-value given by R is 0.121, which agrees with our calculation.
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Two-Sided Exact Binomial Tests

For testing H0: π = π0, suppose the observed binomial count is
kobs .

• P-value = P(X ≤ kobs) =
∑

k≤kobs

(
n
k

)
πk

0(1 − π0)
n−k for a lower

one-sided alternative Ha : π < π0

• P-value = P(X ≥ kobs) =
∑

k≥kobs

(
n
k

)
πk

0(1 − π0)
n−k for a upper

one-sided alternative Ha : π > π0

• If the alternative is two-sided Ha : π , π0, the P-value is the
sum of all the P(X = k) such that P(X = k) ≤ P(X = kobs)

0 5 10 15 20 25 303
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Example: Medical Consultants for Organ Donors (Cont’d)

In this example, the observed count kobs is 3.

As P(X = 9) > P(X = 3) and P(X = k) < P(X = 3) for all
k ≥ 10, the two-sided P-value is

P(X ≤ 3) + P(X ≥ 10) ≈ 0.0872 + 0.1210 = 0.2082

0 5 10 15 20 25 303

Note that the two-sided P-value for an exact binomial test may not
be twice of the one-sided P-value since a binomial distribution may
not be symmetric 43

Two-Sided Exact Binomial Tests in R

> binom.test(3, 62, p=0.1, alternative="two.sided")

Exact binomial test

data: 3 and 62

number of successes = 3, number of trials = 62, p-value = 0.2081

alternative hypothesis: true probability of success is not equal to 0.1

95 percent confidence interval:

0.01009195 0.13496195

sample estimates:

probability of success

0.0483871

The p-value given by R 0.2081 agrees with our calculation.
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Exact Binomial Confidence Intervals

• Just like Wald, score, or LRT confidence intervals, one can
invert the two-sided exact binomial test to construct
confidence intervals for π.

• The 100(1 − α)% exact binomial confidence interval for π is
the collection of those π0 such that the two-sided P-value for
testing H0: π = π0 using the exact binomial test is at least α.

• The computation of the exact binomial confidence interval is
tedious to do by hand, but easy for a computer.

• For the medical consultant example, the 95% exact
confidence interval for π is (0.0101, 0.1350) from the R output
in the previous slide.
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