Probability Theory

Chapter 7: Properties of Expectation

Lecturer

Dr. Monjed H. Samuh

Applied Mathematics \& Physics Department
Palestine Polytechnic University
(monjedsamuh@ppu.edu)

Term 191

Table of Contents

(1) Introduction
(2) Expectation of Sums of Random Variables
(3) Moments of the Number of Events that Occur
4. Covariance, Variance of Sums, and Correlations
(5) Conditional Expectation

6 Moment Generating Functions

Introduction

- The expected value of the random variable X is defined by

$$
E(X)= \begin{cases}\sum_{x} x p(x) & \text { if } X \text { is a discrete random variable } \\ \int_{-\infty}^{\infty} x f(x) d x & \text { if } X \text { is a continuous random variable }\end{cases}
$$

Theorem
If $P(a \leq X \leq b)=1$, then $a \leq E(X) \leq b$.

Expectation of Sums of Random Variables

Suppose that X and Y are random variables and g is a function of two random variables.

- If X and Y have a joint probability mass function $p(x, y)$, then

$$
E(g(X, Y))=\sum_{y} \sum_{x} g(x, y) p(x, y)
$$

- If X and Y have a joint probability density function $f(x, y)$, then

$$
E(g(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y
$$

- Suppose that $E(X)$ and $E(Y)$ are both finite and let $g(X, Y)=X+Y$. Then, in the continuous case,

$$
E(X+Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x+y) f(x, y) d x d y=E(X)+E(Y)
$$

Expectation of Sums of Random Variables

Example

Suppose that for random variables X and $Y, X \geq Y$. Then $E(X) \geq E(Y)$.

- $X \geq Y$ means for any outcome of the probability experiment, the value of the random variable X is greater than or equal to the value of the random variable Y.
- $X \geq Y$ is equivalent to $X-Y \geq 0$.
- It follows that $E(X-Y) \geq 0$.
- or, equivalently, $E(X) \geq E(Y)$.
- We may show by simple induction proof that if $E\left(X_{i}\right)$ is finite for all $i=1,2, \ldots, n$, then

$$
E\left(X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right) .
$$

Expectation of Sums of Random Variables

Example (The sample mean)

Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables having distribution function F and expected value μ. Such a sequence of random variables is said to constitute a sample from the distribution F. The quantity

$$
\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

is called the sample mean. Compute $E(\bar{X})$.

Expectation of Sums of Random Variables

Example (Boole's inequality)

- Let $A_{1}, A_{2}, \ldots, A_{n}$ denote events, and define the indicator variables $X_{i}, i=1,2, \ldots, n$ by

$$
X_{i}= \begin{cases}1 & \text { if } A_{i} \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

- Let $X=\sum_{i=1}^{n} X_{i}$ denotes the number of the events A_{i} that occur.
- Let

$$
Y= \begin{cases}1 & \text { if } X \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

so Y is equal to 1 if at least one of the A_{i} occurs and is 0 otherwise.

Expectation of Sums of Random Variables

Example (Boole's inequality - Cont.)

- Now, it is immediate that $X \geq Y$.
- $E(X) \geq E(Y)$.
- $E(X)=\sum_{i=1}^{n} P\left(A_{i}\right)$.
- $E(Y)=P\left(\bigcup_{i=1}^{n} A_{i}\right)$.
- We obtain Boole's inequality, namely,

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right) .
$$

Expectation of Sums of Random Variables

Example (Expectation of a binomial random variable)

- Let X_{1}, \ldots, X_{n} iid Bernoulli with parameter p.
- $E\left(X_{i}\right)=p$.
- $X=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, p)$.
- $E(X)=n p$.

Example (Expectation of a negative binomial random variable)

- Let X_{1}, \ldots, X_{n} iid geometric with parameter p.
- $E\left(X_{i}\right)=\frac{1}{p}$.
- $X=\sum_{i=1}^{r} X_{i} \sim N B(r, p)$.
- $E(X)=\frac{r}{\rho}$.

Expectation of Sums of Random Variables

Example (Expectation of a hypergeometric random variable)

If n balls are randomly selected from an urn containing N balls of which m are white, find the expected number of white balls selected.

- Let

$$
X_{i}= \begin{cases}1 & \text { if the } i^{\text {th }} \text { white ball is selected } \\ 0 & \text { otherwise }\end{cases}
$$

- $E\left(X_{i}\right)=P\left(X_{i}=1\right)$,

$$
\begin{aligned}
E\left(X_{i}\right) & =P\left(i^{\text {th }} \text { white ball is selected }\right) \\
& =\frac{\binom{1}{1}\binom{N-1}{n-1}}{\binom{N}{n}} \\
& =\frac{n}{N}
\end{aligned}
$$

- $X=\sum_{i=1}^{m} X_{i}$ denote the number of white balls selected.
- $E(X)=\frac{m n}{N}$.

Expectation of Sums of Random Variables

- When one is dealing with an infinite collection of random variables $X_{i}, i \geq 1$, each having a finite expectation $\left(E\left(X_{i}\right)<\infty\right)$, it is not necessarily true that

$$
E\left(\sum_{i=1}^{\infty} X_{i}\right)=\sum_{i=1}^{\infty} E\left(X_{i}\right)
$$

- To determine when it is valid, we note that $\sum_{i=1}^{\infty} X_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} X_{i}$. Thus,

$$
E\left(\sum_{i=1}^{\infty} X_{i}\right)=E\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} X_{i}\right) \stackrel{?}{=} \lim _{n \rightarrow \infty} E\left(\sum_{i=1}^{n} X_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} E\left(X_{i}\right)=\sum_{i=1}^{\infty} E\left(X_{i}\right)
$$

- It is valid whenever we are justified in interchanging the expectation and limit operations.
- Although, in general, this interchange is not justified, it can be shown to be valid in two important special cases:
(1) The X_{i} are all nonnegative random variables. (That is, $P\left(X_{i} \geq 0\right)=1$ for all $\left.i\right)$.
(2) $\sum_{i=1}^{\infty} E\left(\left|X_{i}\right|\right)<\infty$.

Moments of the Number of Events that Occur

- For given events $A_{1}, A_{2}, \ldots, A_{n}$, let X be the number of these events that occur.
- Define

$$
I_{i}= \begin{cases}1 & \text { if } A_{i} \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

- Because $X=\sum_{i=1}^{n} I_{i}$, we obtain $E(X)=\sum_{i=1}^{n} P\left(A_{i}\right)$.
- Now suppose we are interested in the number of pairs of events that occur.
- Then,

$$
I_{i} l_{j}= \begin{cases}1 & \text { if both } A_{i} \& A_{j} \text { occur } \\ 0 & \text { otherwise }\end{cases}
$$

- It follows that the number of pairs is equal to $\sum_{i<j} l_{i} l_{\text {. }}$.
- But because X is the number of events that occur, it also follows that the number of pairs of events that occur is $\binom{X}{2}$.

Moments of the Number of Events that Occur

- $\binom{X}{2}=\sum_{i<j} I_{i} I_{j}$, where there are $\binom{n}{2}$ terms in the summation.
- Taking expectations yields

$$
E\left(\binom{X}{2}\right)=\sum_{i<j} E\left(l_{i} l_{j}\right)=\sum_{i<j} P\left(A_{i} \cap A_{j}\right)
$$

- or

$$
E\left(\frac{X(X-1)}{2}\right)=\sum_{i<j} P\left(A_{i} \cap A_{j}\right)
$$

- giving that $E\left(X^{2}\right)-E(X)=2 \sum_{i<j} P\left(A_{i} \cap A_{j}\right)$.
- which yields $E\left(X^{2}\right)$, and thus, $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$.
- In general,

$$
E\left(\binom{X}{k}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} E\left(I_{i_{1}} I_{i_{2}} \cdots I_{i_{k}}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} P\left(A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right)
$$

Moments of the Number of Events that Occur

Example (Moments of binomial random variables)

- Consider n independent trials, with each trial being a success with probability p.
- Let A_{i} be the event that trial i is a success.
- When $i \neq j, P\left(A_{i} \cap A_{j}\right)=p^{2}$.
- Consequently,

$$
E\left(\binom{x}{2}\right)=\sum_{i<j} p^{2}=\binom{n}{2} p^{2} .
$$

- or

$$
E\left(X^{2}\right)-E(X)=n(n-1) p^{2} .
$$

- But,

$$
E(X)=\sum_{i=1}^{n} P\left(A_{i}\right)=n p
$$

- From the preceding slide,

$$
\operatorname{Var}(X)=n(n-1) p^{2}+n p-(n p)^{2}=n p(1-p) .
$$

Covariance, Variance of Sums, and Correlations

Theorem

If X and Y are independent, then, for any functions h and g,

$$
E(g(X) h(Y))=E(g(X)) E(h(Y)) .
$$

Proof:

Covariance, Variance of Sums, and Correlations

Definition (Covariance)

The covariance between X and Y, denoted by $\operatorname{Cov}(X, Y)$, is defined by

$$
\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))] .
$$

- $\operatorname{Cov}(X, Y)$ gives us information about the relationship between the random variables X and Y.
- It can be shown that $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$. Proof:

Covariance, Variance of Sums, and Correlations

- If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.
- However, the converse is not true.

Counter example:

Let X be a random variable such that

$$
P(X=0)=P(X=1)=P(X=-1)=\frac{1}{3},
$$

and define Y :

$$
Y=\left\{\begin{array}{ll}
1 & \text { if } X=0 \\
0 & \text { if } X \neq 0
\end{array},\right.
$$

- $X Y=0 \Longrightarrow E(X Y)=0$.
- Also, $E(X)=0$.
- Thus, $\operatorname{Cov}(X, Y)=0$.
- However, it is clear that X and Y are dependent.

Covariance, Variance of Sums, and Correlations

Theorem

(0) $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$.
(2) $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.
(3) $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$.
(1) $\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$.

Covariance, Variance of Sums, and Correlations

Theorem

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) & =\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

Theorem

If X_{1}, \ldots, X_{n} are pairwise independent, in that X_{i} and X_{j} are independent for $i \neq j$, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Covariance, Variance of Sums, and Correlations

- $\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.
- $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$.
- $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$.

Covariance, Variance of Sums, and Correlations

Example

Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables having expected value μ and variance σ^{2}.

- Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ be the sample mean.
- The quantities $X_{i}-\bar{X}, i=1, \ldots, n$, are called deviations, as they equal the differences between the individual data and the sample mean.
- The random variable $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ is called the sample variance.
(1) Find $\operatorname{Var}(\bar{X})$.

Covariance, Variance of Sums, and Correlations

(2) Show that $E\left(S^{2}\right)=\sigma^{2}$.

Covariance, Variance of Sums, and Correlations

Definition (Correlation)

The correlation of two random variables X and Y, denoted by $\rho(X, Y)$, is defined, as long as $\operatorname{Var}(X) \operatorname{Var}(Y)$ is positive, by

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Theorem

$$
-1 \leq \rho(X, Y) \leq 1 .
$$

Proof:

- Hint: Use Cauchy-Schwarz inequality:

$$
\left(\sum_{i=1}^{n} X_{i}^{\prime} Y_{i}^{\prime}\right)^{2} \leq\left(\sum_{i=1}^{n} X_{i}^{\prime}\right)\left(\sum_{i=1}^{n} Y_{i}^{\prime}\right) .
$$

- Set $X_{i}^{\prime}=\left(X_{i}-\bar{X}\right)$ and $Y_{i}^{\prime}=\left(Y_{i}-\bar{Y}\right)$.

Covariance, Variance of Sums, and Correlations

Properties of ρ :

(1) $-1 \leq \rho(X, Y) \leq 1$. (Previous Slide)
(2) $\rho(X, Y)=1$ if and only if $Y=a X+b$ for some $a>0$.
(3) $\rho(X, Y)=-1$ if and only if $Y=a X+b$ for some $a<0$.
(1) $\rho(X, Y)$ measures the degree of linearity between X and Y. A value near +1 or -1 indicates a high degree of linearity, whereas a value near 0 indicates that such linearity is absent.
(0) A positive value indicates that Y tends to increase when X does, whereas a negative value indicates that Y tends to decrease when X increases.
(0) $\rho(X, Y)=0$, then X and Y are said to be uncorrelated.

Covariance, Variance of Sums, and Correlations

Example

Suppose X and Y have a joint pdf:

$$
f(x, y)= \begin{cases}2 e^{-x} e^{-y} & \text { if } 0 \leq y \leq x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

(1) The marginal pdf of X is given by

$$
f_{x}(x)=\int_{0}^{x} 2 e^{-x} e^{-y} d y=2 e^{-x}\left(1-e^{-x}\right), \quad x \geq 0
$$

(2) The marginal pdf of Y is given by

$$
f_{Y}(y)=\int_{y}^{\infty} 2 e^{-x} e^{-y} d x=2 e^{-2 y}, \quad y \geq 0
$$

Covariance, Variance of Sums, and Correlations

(3) $E(X)=\frac{3}{2}$, and $\operatorname{Var}(X)=\frac{5}{4}$.
(4) $E(Y)=\frac{1}{2}$, and $\operatorname{Var}(Y)=\frac{1}{4}$.
(5) $E(X Y)=1$.
(6) $\operatorname{Cov}(X, Y)=1-\frac{3}{2} \times \frac{1}{2}=\frac{1}{4}$.
(7) $\operatorname{Cor}(X, Y)=\rho(X, Y)=\frac{1}{\sqrt{5}}$.

Covariance, Variance of Sums, and Correlations

Example

Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables having variance σ^{2}. Show that

$$
\operatorname{Cov}\left(X_{i}-\bar{X}, \bar{X}\right)=0 .
$$

- We have

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}-\bar{X}, \bar{X}\right) & =\operatorname{Cov}\left(X_{i}, \bar{X}\right)-\operatorname{Cov}(\bar{X}, \bar{X}) \\
& =\operatorname{Cov}\left(X_{i}, \frac{1}{n} \sum_{j=1}^{n} X_{j}\right)-\operatorname{Var}(\bar{X}) \\
& =\frac{1}{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)-\frac{\sigma^{2}}{n} \\
& =0 .
\end{aligned}
$$

where

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\left\{\begin{array}{ll}
0 & \text { if } i \neq j \text { by independence } \\
\sigma^{2} & \text { if } i=j \text { since } \operatorname{Var}\left(X_{i}\right)=\sigma^{2}
\end{array},\right.
$$

Covariance, Variance of Sums, and Correlations

- Although \bar{X} and the deviation $X_{i}-\bar{X}$ are uncorrelated, they are not, in general, independent.
- However, in the special case where the X_{i} are normal random variables, it turns out that not only is \bar{X} independent of a single deviation, but it is independent of the entire sequence of deviations $X_{j}-\bar{X}, j=1, \ldots, n$.
- The sample mean \bar{X} and the sample variance S^{2} are independent.
- $\frac{(n-1) s^{2}}{\sigma^{2}}$ have a chi-squared distribution with $n-1$ degrees of freedom (More details later).

Conditional Expectation

Definition (Conditional Expectation - Discrete Case)

- Recall that if X and Y are jointly discrete random variables, then the conditional probability mass function of X, given that $Y=y$, is defined for all y such that $P(Y=y)>0$, by

$$
p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{p(x, y)}{p_{Y}(y)} .
$$

- It is therefore natural to define, in this case, the conditional expectation of X given that $Y=y$, for all values of y such that $p_{\gamma}(y)>0$, by

$$
\begin{aligned}
E(X \mid Y=y) & =\sum_{x} x P(X=x \mid Y=y) \\
& =\sum_{x} x p_{X \mid Y}(x \mid y) .
\end{aligned}
$$

- Therefore, if X and Y are independent, then $E(X \mid Y=y)=E(X)$.

Conditional Expectation

Example

If X and Y are independent binomial random variables with identical parameters n and p, calculate the conditional expected value of X given that $X+Y=m$.

- Let us first calculate the conditional pmf of X given that $X+Y=m$.

$$
\begin{aligned}
P(X=k \mid X+Y=m) & =\frac{P(X=k, X+Y=m)}{P(X+Y=m)} \\
& =\frac{P(X=k, Y=m-k)}{P(X+Y=m)} \\
& =\frac{P(X=k) P(Y=m-k)}{P(X+Y=m)} \\
& =\frac{\binom{n}{k}\binom{n}{m}}{\binom{2 n}{m}}, \quad k \leq \min (m, n) .
\end{aligned}
$$

- Hence, the conditional distribution of X, given that $X+Y=m$, is the hypergeometric distribution.
- Therefore,

$$
E(X \mid X+Y=m)=\frac{m n}{2 n}=\frac{m}{2} .
$$

Conditional Expectation

Definition (Conditional Expectation - Continuous Case)

- If X and Y are jointly continuous random variables with a joint probability density function $f(x, y)$, then the conditional probability density of X, given that $Y=y$, is defined for all y such that $f_{y}(y)>0$, by

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)} .
$$

- It is therefore natural to define, in this case, the conditional expectation of X given that $Y=y$, for all values of y such that $f_{Y}(y)>0$, by

$$
E(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
$$

Conditional Expectation

Example

Suppose that the joint density of X and Y is given by

$$
f(x, y)=\frac{e^{-x / y} e^{-y}}{y}, \quad 0<x<\infty, 0<y<\infty
$$

Compute $E(X \mid Y=y)$.
Ans. $X \mid Y \sim \operatorname{Exp}(1 / y)$.

Conditional Expectation

- Just as conditional probabilities satisfy all of the properties of ordinary probabilities, so do conditional expectations satisfy the properties of ordinary expectations.
- For instance, such formulas as

$$
E(g(X) \mid Y=y)= \begin{cases}\sum_{x} g(x) p_{X \mid Y}(x \mid y) & \text { in the discrete case } \\ \int_{-\infty}^{\infty} g(x) f_{X \mid Y}(x \mid y) d x & \text { in the continuous case }\end{cases}
$$

- and

$$
E\left(\sum_{i=1}^{n} X_{i} \mid Y=y\right)=\sum_{i=1}^{n} E\left(X_{i} \mid Y=y\right)
$$

Conditional Expectation

Theorem

Let us denote by $E(X \mid Y)$ that function of the random variable Y whose value at $Y=y$ is $E(X \mid Y=y)$.

$$
E(X)=E[E(X \mid Y)]= \begin{cases}\sum_{y} E(X \mid Y=y) P(Y=y) & \text { If } Y \text { is discrete } \\ \int_{-\infty}^{\infty} E(X \mid Y=y) f_{y}(y) d y & \text { If } Y \text { is continuous }\end{cases}
$$

Proof:

- See Example 5f Page 319.

Conditional Expectation

Definition (Conditional Variance)

The conditional variance of X given that $Y=y$ is defined by

$$
\operatorname{Var}(X \mid Y)=E\left[(X-E(X \mid Y))^{2} \mid Y\right]
$$

- It can be written as

$$
\operatorname{Var}(X \mid Y)=E\left(X^{2} \mid Y\right)-(E(X \mid Y))^{2} .
$$

- $\operatorname{Var}(X \mid Y)$ is exactly analogous to the usual definition of variance, but now all expectations are conditional on the fact that Y is known.

Conditional Expectation

Theorem

$$
\operatorname{Var}(X)=E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}[E(X \mid Y)]
$$

Proof:

- $\operatorname{Var}(X \mid Y)=E\left(X^{2} \mid Y\right)-(E(X \mid Y))^{2}$.
- $E[\operatorname{Var}(X \mid Y)]=E\left(X^{2}\right)-E\left[(E(X \mid Y))^{2}\right]$.
- $\operatorname{Var}[E(X \mid Y)]=E\left[(E(X \mid Y))^{2}\right]-(E(X))^{2}$.

Moment Generating Functions

Definition (Moment Generating Function)

The moment generating function $M(t)$ of the random variable X is defined for all real values of t by

$$
M(t)=E\left(e^{t X}\right)= \begin{cases}\sum_{x} e^{t x} p(x) & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} e^{t x} f(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

- We call $M(t)$ the moment generating function because all the moments of X can be obtained by successively differentiating $M(t)$ and then evaluating the result at $t=0$.
- For example,

$$
M^{\prime}(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t}\left(e^{t x}\right)\right)=E\left(X e^{t x}\right)
$$

where we have assumed that the interchange of the differentiation and expectation operators is legitimate.

Moment Generating Functions

- Hence,

$$
M^{\prime}(0)=E(X) .
$$

- Similarly,

$$
M^{\prime \prime}(t)=E\left(X^{2} e^{t X}\right) .
$$

- Thus,

$$
M^{\prime \prime}(0)=E\left(X^{2}\right)
$$

- In general, the $n^{\text {th }}$ derivative of $M(t)$ is given by

$$
M^{(n)}(t)=E\left(X^{n} e^{t X}\right), \quad n \geq 1
$$

- Implying that,

$$
M^{(n)}(0)=E\left(X^{n}\right), \quad n \geq 1 .
$$

Moment Generating Functions

Example

If X is a binomial random variable with parameters n and p, then

$$
M(t)=E\left(e^{t x}\right)=\left(p e^{t}+(1-p)\right)^{n}
$$

Moment Generating Functions

Example

If X is a Poisson random variable with parameter λ, then

$$
M(t)=E\left(e^{t X}\right)=e^{\lambda\left(e^{t}-1\right)}
$$

Moment Generating Functions

Example

If X is an exponential random variable with parameter λ, then

$$
M(t)=E\left(e^{t x}\right)=\frac{\lambda}{\lambda-t}, \quad t<\lambda .
$$

We note from this derivation that, for the exponential distribution, $M(t)$ defined only for values of $t<\lambda$.

Moment Generating Functions

Example

Let X be a normal random variable with parameters μ and σ^{2}.

- We first compute the moment generating function of a standard normal random variable with parameters 0 and 1 .
- Letting Z be such a random variable, we have

$$
\begin{aligned}
M(t) & =E\left(e^{t X}\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-\frac{1}{2} x^{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(x^{2}-2 t x\right)} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-t)^{2}+\frac{1}{2} t^{2}} d x \\
& =e^{\frac{1}{2} t^{2}}
\end{aligned}
$$

Moment Generating Functions

Example

- Hence, the moment generating function of the standard normal random variable Z is $M_{Z}(t)=e^{\frac{1}{2} t^{2}}$.
- We now compute the moment generating function of a normal random variable $X=\mu+\sigma Z$ with parameters μ and σ^{2}.
- We have

$$
M(t)=E\left(e^{t X}\right)=E\left(e^{t(\mu+\sigma Z)}\right)=e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}} .
$$

Moment Generating Functions

Discrete Probability Distribution.				
	Probability mass function, $p(x)$	Moment generating function, $M(t)$	Mean	Variance
Binomial with parameters n, p; $0 \leq p \leq 1$	$\begin{aligned} & \binom{n}{x} p^{x}(1-p)^{n-x} \\ & x=0,1, \ldots, n \end{aligned}$	$\left(p e^{t}+1-p\right)^{n}$	$n p$	$n p(1-p)$
Poisson with parameter $\lambda>0$	$\begin{aligned} & e^{-\lambda} \frac{\lambda^{x}}{x!} \\ & x=0,1,2, \ldots \end{aligned}$	$\exp \left\{\lambda\left(e^{t}-1\right)\right\}$	λ	λ
Geometric with parameter $0 \leq p \leq 1$	$\begin{aligned} & p(1-p)^{x-1} \\ & x=1,2, \ldots \end{aligned}$	$\frac{p e^{t}}{1-(1-p) e^{t}}$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
Negative binomial with parameters r, p; $0 \leq p \leq 1$	$\begin{aligned} & \binom{n-1}{r-1} p^{r}(1-p)^{n-r} \\ & n=r, r+1, \ldots \end{aligned}$	$\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^{2}}$

Moment Generating Functions

Continuous Probability Distribution.				
	Probability density function, $f(x)$	Moment generating function, $M(t)$	Mean	Variance
Uniform over (a, b)	$f(x)= \begin{cases}\frac{1}{b-a} & a<x<b \\ 0 & \text { otherwise }\end{cases}$	$\frac{e^{t b}-e^{t a}}{t(b-a)}$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Exponential with parameter $\lambda>0$	$f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}$	$\frac{\lambda}{\lambda-t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$
Gamma with parameters $(s, \lambda), \lambda>0$	$f(x)= \begin{cases}\frac{\lambda e^{-\lambda x}(\lambda x)^{s-1}}{\Gamma(s)} & x \geq 0 \\ 0 & x<0\end{cases}$	$\left(\frac{\lambda}{\lambda-t}\right)^{s}$	$\frac{s}{\lambda}$	$\frac{s}{\lambda^{2}}$
Normal with parameters (μ, σ^{2})	$f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \quad-\infty<x<\infty$	$\exp \left\{\mu t+\frac{\sigma^{2} t^{2}}{2}\right\}$	μ	σ^{2}

Moment Generating Functions

Theorem

The moment generating function uniquely determines the distribution. That is, if $M_{X}(t)$ exists and is finite in some region about $t=0$, then the distribution of X is uniquely determined.

Theorem

The moment generating function of the sum of independent random variables equals the product of the individual moment generating functions.
Proof:

Moment Generating Functions

Example

Let X and Y be independent binomial random variables with parameters (n, p) and (m, p), respectively. What is the distribution of $X+Y$?

Moment Generating Functions

Example

Let X and Y be independent Poisson random variables with parameters λ_{1} and λ_{2}, respectively. What is the distribution of $X+Y$?

Moment Generating Functions

Example

Let X and Y be independent normal random variables with respective parameters $\left(\mu_{1}, \sigma_{1}^{2}\right)$ and (μ_{2}, σ_{2}^{2}). What is the distribution of $X+Y$?

Moment Generating Functions

Definition (Joint Moment Generating Functions)

For any n random variables X_{1}, \ldots, X_{n}, the joint moment generating function, $M\left(t_{1}, \ldots, t_{n}\right)$, is defined, for all real values of t_{1}, \ldots, t_{n}, by

$$
M\left(t_{1}, \ldots, t_{n}\right)=E\left(e^{t_{1} x_{1}+\cdots+t_{n} x_{n}}\right)
$$

- The individual moment generating functions can be obtained from $M\left(t_{1}, \ldots, t_{n}\right)$ by letting all but one of the t_{j} 's be 0 .

$$
M_{X_{i}}(t)=E\left(e^{t X_{i}}\right)=M(0, \ldots, 0, i, 0, \ldots, 0)
$$

where the t is in the $i^{\text {th }}$ place.

- The joint moment generating function $M\left(t_{1}, \ldots, t_{n}\right)$ uniquely determines the joint distribution of X_{1}, \ldots, X_{n}.

Moment Generating Functions

Theorem

X_{1}, \ldots, X_{n} are independent random variables if and only if

$$
M\left(t_{1}, \ldots, t_{n}\right)=M_{x_{1}}\left(t_{1}\right) \times \cdots \times M_{X_{n}}\left(t_{n}\right) .
$$

Proof:

Moment Generating Functions

Example

Let X and Y be independent normal random variables, each with mean μ and variance σ^{2}. Show that $X+Y$ and $X-Y$ are independent.

Problems and Exercises

PROBLEMS

PAGE 352:

$$
4,6,7,30,31,33,37,38,40,45,48,50,51
$$

THEORETICAL EXERCISES

PAGE 359:

$$
1,2,19,20,22,25,26,28
$$

