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Introduction

@ The expected value of the random variable X is defined by

> Xp(x) if X is a discrete random variable
EX)=9{ o
J xf(x)dx if X is a continuous random variable

Theorem
IfPl@a< X<b)=1,thena< E(X)<b.
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Expectation of Sums of Random Variables

Suppose that X and Y are random variables and g is a function of two random
variables.

@ If X and Y have a joint probability mass function p(x, y), then

E(9(X,Y)) = ZZQ(XJ)p(X,y)
y x

@ If X and Y have a joint probability density function f(x, y), then

E(g(X,Y)) = / / 9(x,)f(x, y)dxay.

—00 —00

@ Suppose that E(X) and E(Y) are both finite and let g(X, Y) = X + Y. Then, in
the continuous case,

oo oo

E(X+Y)= / /(x + ), y)dxdy = E(X) + E(Y).

— 00 — 00
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Expectation of Sums of Random Variables

Example
Suppose that for random variables X and Y, X > Y. Then E(X) > E(Y).

@ X > Y means for any outcome of the probability experiment, the value of the
random variable X is greater than or equal to the value of the random variable Y.

@ X > Yisequivalentto X — Y > 0.

@ [t follows that E(X — Y) > 0.

@ or, equivalently, E(X) > E(Y).

@ We may show by simple induction proof that if E(X;) is finite forall i =1,2,...,n,
then
E(Xi+ -+ Xn) = E(X1) + -+ E(Xn).
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Expectation of Sums of Random Variables

Example (The sample mean)

Let Xi, ..., X, be independent and identically distributed random variables having
distribution function F and expected value p. Such a sequence of random variables is

said to constitute a sample from the distribution F. The quantity

o L%
n

is called the sample mean. Compute E(X).
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Expectation of Sums of Random Variables

Example (Boole’s inequality)

@ Let Ay, A, ..., Ay denote events, and define the indicator variables
Xi,i=1,2,...,nby
1 if Aj occurs
)(i = )
0 otherwise

@ Let X =7, X; denotes the number of the events A, that occur.

o Let
1 ifX>1
Y = ,
0 otherwise

so Y is equal to 1 if at least one of the A; occurs and is 0 otherwise.
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Expectation of Sums of Random Variables

Example (Boole’s inequality - Cont.)
@ Now, it is immediate that X > Y.
o E(X) > E(Y).
e E(X)=>1,P(A).
° E(Y)=P (UL, A).

@ We obtain Boole’s inequality, namely,

P (Lnj A,-) < i P(A).
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Expectation of Sums of Random Variables

Example (Expectation of a binomial random variable)
@ Let Xj,..., X, iid Bernoulli with parameter p.

° E(X)=p.
® X =331, Xi ~ Bin(n, p).

@ E(X)=np.

Example (Expectation of a negative binomial random variable)
@ Let Xi,..., X, iid geometric with parameter p.

° E(X)=1.

® X=X, X ~ NB(r,p).
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Expectation of Sums of Random Variables

Example (Expectation of a hypergeometric random variable)

If n balls are randomly selected from an urn containing N balls of which m are white,
find the expected number of white balls selected.

o Let

1 if the i white ball is selected
X =
0 otherwise

E(X;) = P(i" white ball is selected)
_ OO0
()
n
N

@ X =3, X; denote the number of white balls selected.

o E(X)="mn

N -

v
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Expectation of Sums of Random Variables

@ When one is dealing with an infinite collection of random variables X;, i > 1, each
having a finite expectation (E(X;) < oo), it is not necessarily true that

(£9)-Eoo

@ To determine when it is valid, we note that 7%, Xi = limn00 Y1 Xi. Thus,

() -#(sm 5) e (1) - oo Seon

i=1

@ ltis valid whenever we are justified in interchanging the expectation and limit
operations.

@ Although, in general, this interchange is not justified, it can be shown to be valid in
two important special cases:

@ The X; are all nonnegative random variables. (That is, P(X; > 0) = 1 for all i).

Q X7 E(1X)) < oo
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Moments of the Number of Events that Occur

For given events Ay, Az, . . ., An, let X be the number of these events that occur.

Define

1 if A occurs

0 otherwise
Because X = >, /;, we obtain E(X) = Y_7_, P(A).

(]

Now suppose we are interested in the number of pairs of events that occur.
Then,

(]

1 if both Ai&A; occur
Iilj = 5
0 otherwise

It follows that the number of pairs is equal to 3 /i/;.
i<j

@ But because X is the number of events that occur, it also follows that the number
of pairs of events that occur is (5).
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Moments of the Number of Events that Occur
o (3) = X Iil;, where there are (}) terms in the summation.
i<j

@ Taking expectations yields

E ((;)) => E(i) =) _P(ANA)

i<j i<j
@ or

E (LXZ_ 1)) — Y P(ANA)

i<j

@ giving that E(X?) — E(X) =23 P (AN A)).

i<j
e which yields £(X?), and thus, Var(X) = E(X?) — (E(X))>.

@ In general,

X
E((k)): Z E(ll,-- 1) = Z P(A, NA,N---NA,)

iy <ip<--- <l iy <ip <o+ <i
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Moments of the Number of Events that Occur

Example (Moments of binomial random variables)

@ Consider nindependent trials, with each trial being a success with probability p.

@ Let A; be the event that trial j is a success.

@ Wheni#j, P(AiNA) = p°.
@ Consequently,
X i >  [(N) 2
“((8)-z7- ()
@ or
E(X?) — E(X) = n(n—1)p°.
@ But,

E(X) = Z P(A)) = np.

From the preceding slide,

Var(X) = n(n — 1)p? + np — (np)? = np(1 — p).

v
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Covariance, Variance of Sums, and Correlations

Theorem
If X and Y are independent, then, for any functions h and g,

E(9(X)h(Y)) = E(9(X)) E (h(Y)).

Proof:
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Covariance, Variance of Sums, and Correlations

Definition (Covariance)
The covariance between X and Y, denoted by Cov(X, Y), is defined by

Cov(X,Y) = E[(X — E(X)) (Y — E(Y))].

@ Cov(X, Y) gives us information about the relationship between the random
variables X and Y.

@ It can be shown that Cov(X, Y) = E(XY) — E(X)E(Y).
Proof:

Monjed H. Samuh — PPU Probability Theory — Term 191 2019/2020 16/53



Covariance, Variance of Sums, and Correlations

@ If X and Y are independent, then Cov(X, Y) = 0.

@ However, the converse is not true.

Counter example:
Let X be a random variable such that

P(X=0)=P(X=1)=P(X=-1)=

1 ifX=0
Y = ,
0 ifX#£0

1
37

and define Y:

o XY =0 = E(XY)=0.

Also, E(X) = 0.
e Thus, Cov(X,Y)=0.

o However, it is clear that X and Y are dependent.
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Covariance, Variance of Sums, and Correlations

Theorem
@ Cov(X,Y)= Cov(Y,X).

@ Cov(X, X) = Var(X).

© Cov(aX,Y)=aCov(X,Y).

@ Cov (X0, X, X1, ¥j) = XLy T, Cov(X,, ).

v
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Covariance, Variance of Sums, and Correlations

Theorem
n n n
Var (Z x,) = Cov (Z X,y x,)
i=1 i=1 j=1
n n
=3 Cov(x.X)
i=1 j=1

- zn: Var(X;) + _ Cov(X;, X))

i=1 i£j

- Z Var(X)) + 2 Cov(X;, X))

i=1 i<j

Theorem

If Xy, ..., X, are pairwise independent, in that X; and X; are independent for i # j, then

Var (i: X,-) = z": Var(X;).
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Covariance, Variance of Sums, and Correlations

@ Var <2nj a,-X,-) = an aVar(X;) + 23 aaiCov(X;, X)).
. P 2

i=1 i<j
@ Var(aX + bY) = & Var(X) + b*Var(Y) + 2abCov(X, Y).

@ Cov(aX + b,cY + d) = acCov(X,Y).
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Covariance, Variance of Sums, and Correlations

Example

Let Xi, ..., X, be independent and identically distributed random variables having
expected value x and variance o2.

o Let X = 137 X; be the sample mean.

@ The quantities X; — X,i=1,...,n, are called deviations, as they equal the
differences between the individual data and the sample mean.

@ The random variable S? = - ™7 (X; — X)? is called the sample variance.

(1) Find Var(X).
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Covariance, Variance of Sums, and Correlations

(2) Show that £(S?) = 4.
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Covariance, Variance of Sums, and Correlations

Definition (Correlation)

The correlation of two random variables X and Y, denoted by p(X, Y), is defined, as
long as Var(X)Var(Y) is positive, by

pX V)= 2D
V/ Var(X)Var(Y)
Theorem
Proof:

@ Hint: Use Cauchy-Schwarz inequality:

(Son) < (52) (57)

® SetX; =(X;—X)and Y, =(Yi—Y).

.
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Covariance, Variance of Sums, and Correlations

Properties of p:

@ —1 <p(X,Y) < 1. (Previous Slide)
Q p(X,Y)=1ifandonlyif Y = aX + b for some a > 0.
Q p(X,Y)=—1ifand only if Y = aX + b for some a < 0.

@ (X, Y) measures the degree of linearity between X and Y. A value near +1 or
—1 indicates a high degree of linearity, whereas a value near 0 indicates that such
linearity is absent.

@ A positive value indicates that Y tends to increase when X does, whereas a
negative value indicates that Y tends to decrease when X increases.

Q p(X,Y) =0, then X and Y are said to be uncorrelated.
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Covariance, Variance of Sums, and Correlations

Example
Suppose X and Y have a joint pdf:

2e e’ if0<y<x<o
f(x,y) =

0 otherwise

(1) The marginal pdf of X is given by
fx(x) = /Ze_xe_ydy =2 *(1-e%), x>0
0

(2) The marginal pdf of Y is given by

fr(y) = /2e”‘e’ydx =2, y>0.
y
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Covariance, Variance of Sums, and Correlations

(3) E(X) =2, and Var(X) = .

(4) E(Y) = },and Var(Y) = ;.
(5) E(XY) = 1.
(6) Cov(X,Y)=1-3x1=1

(7) Cor(X,Y) = p(X,Y) = L.
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Covariance, Variance of Sums, and Correlations

Example

Let Xi, ..., X, be independent and identically distributed random variables having
variance 0. Show that o
Cov (X; — X, X) =0.

@ We have o _ o
Cov (X; — X, X) = Cov (X;, X) — Cov (X, X)
1 n
=Cov [ X,—=-> X | — Var(X)
n
n 0_2
== > Cov(X, %) — =
j=1 n
=0.
where

0 if i # j by independence
Cov(X;, Xj) = )

o? ifi = jsince Var(X;) = o?
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Covariance, Variance of Sums, and Correlations

@ Although X and the deviation X; — X are uncorrelated, they are not, in general,
independent.

@ However, in the special case where the X; are normal random variables, it turns
out that not only is X independent of a single deviation, but it is independent of the
entire sequence of deviations X; — X, j=1,...,n.

@ The sample mean X and the sample variance S? are independent.

° @ have a chi-squared distribution with n — 1 degrees of freedom (More

details later).
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Conditional Expectation

Definition (Conditional Expectation — Discrete Case)

@ Recall thatif X and Y are jointly discrete random variables, then the conditional
probability mass function of X, given that Y = y, is defined for all y such that
P(Y=y)>0,by

puv(xly) = P(X = xlY =y) = BX)

@ It is therefore natural to define, in this case, the conditional expectation of X given
that Y = y, for all values of y such that py(y) > 0, by

EX|Y=y)=) xP(X=x|Y =y)

= ZXPX\Y(le)'

@ Therefore, if X and Y are independent, then E (X|Y = y) = E(X).
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Conditional Expectation

Example

If X and Y are independent binomial random variables with identical parameters n and
p, calculate the conditional expected value of X given that X + Y = m.

@ Let us first calculate the conditional pmf of X giventhat X + Y = m.

P(X=kX+Y=m)=X=kX+Y=m)

P(X+Y=m)
P(X=kKY=m—k)
T PX+Y=m)
 P(X=K)P(Y=m—k)
P(X+Y=m)
() (m”)

— > Kk < min(m,n).
()

@ Hence, the conditional distribution of X, given that X + Y = m, is the
hypergeometric distribution.

@ Therefore,
EXX+Y=m="0_17

2n 2

v
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Conditional Expectation

Definition (Conditional Expectation — Continuous Case)

@ If X and Y are jointly continuous random variables with a joint probability density
function f(x, y), then the conditional probability density of X, given that Y =y, is
defined for all y such that f,(y) > 0, by

fxy(xly) =

@ It is therefore natural to define, in this case, the conditional expectation of X given
that Y = y, for all values of y such that fy(y) > 0, by

oo

EXIY =)= [ xtay (xly) o,

—0o0
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Conditional Expectation

Example
Suppose that the joint density of X and Y is given by
—X/Y o=y

f(x,y):ef, 0<x<o0,0<y<o0.

Compute £ (X|Y = ).

v
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Conditional Expectation

@ Just as conditional probabilities satisfy all of the properties of ordinary
probabilities, so do conditional expectations satisfy the properties of ordinary
expectations.

@ For instance, such formulas as

> IX)pxiv(x]y) in the discrete case
E(@X)Y=y)=

)

J 9(x)fqv(x]y)dx inthe continuous case

@ and

E(Z)ow:y):ZE(W:y).
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Conditional Expectation

Theorem
Let us denote by E(X|Y) that function of the random variable Y whose value atY =y
is E(X|Y =y).
>, EX|Y=y)P(Y=y) IfYisdiscrete
E(X) = E[E(X|Y)] =

I

| EX|Y =y)f(y)dy If Y is continuous

Proof:

@ See Example 5f Page 319.
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Conditional Expectation

Definition (Conditional Variance)
The conditional variance of X given that Y = y is defined by

Var(X|Y) = E [(X — E(X|Y))? \Y]

@ It can be written as

Var(X|Y) = E(X?|Y) — (E(X|Y))?.

@ Var(X|Y) is exactly analogous to the usual definition of variance, but now all
expectations are conditional on the fact that Y is known.
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Conditional Expectation

Theorem
Var(X) = E[Var(X|Y)] + Var [E(X]|Y)].

Proof:
o Var(X|Y) = E (X?|Y) — (E(X|Y))>.

o E[Var(X|Y)] = E(X?) — E [(E(X|Y))2].

o Var[E (X|Y)] = E [(E(XIY)Y] - (E(X)).

v
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Moment Generating Functions

Definition (Moment Generating Function)

The moment generating function M(t) of the random variable X is defined for all real
values of t by

>, e¥p(x) if X is discrete

M(t)=E (") ={ « :
[ e*f(x)dx if X is continuous

@ We call M(t) the moment generating function because all the moments of X can
be obtained by successively differentiating M(t) and then evaluating the result at
t=0.

@ For example,
W (0= SE () = (5 () = (%)

where we have assumed that the interchange of the differentiation and expectation
operators is legitimate.
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Moment Generating Functions

@ Hence,
M (0) = E(X)
@ Similarly,
M (t)=E (xzefx) .
@ Thus,

M’ (0) = E(X?).

@ In general, the n'™ derivative of M(t) is given by

MO(t) = E (x"efx) , n>1.

@ Implying that,
M™0) = E(X"), n>1.
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Moment Generating Functions

Example
If X is a binomial random variable with parameters n and p, then

M(t) = E (%) = (pe' + (1 - p))"

v
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Moment Generating Functions

Example
If X is a Poisson random variable with parameter ), then

M(t) = E (e'X) _ Me)

v
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Moment Generating Functions

Example
If X is an exponential random variable with parameter A, then

M(t) = E (&%) = % t< A

We note from this derivation that, for the exponential distribution, M(t) defined only for

values of t < .

v
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Moment Generating Functions

Example

Let X be a normal random variable with parameters . and ¢2.

@ We first compute the moment generating function of a standard normal random
variable with parameters 0 and 1.

@ Letting Z be such a random variable, we have

(")

m
D

M(t) =

1,2
¥e 2 dx

D

SRS S
3 3 3

| | |
8 —g 3 —3g 83
D
L
=
L
X
2

v
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Moment Generating Functions

Example

@ Hence, the moment generating function of the standard normal random variable Z

is Mz(t) = e2”.

@ We now compute the moment generating function of a normal random variable
X = p+ oZ with parameters 1 and o2.

@ We have s
ot

M(t)=E (etx> _E (et(u+aZ)) _ ot

v
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Moment Generating Functions

Discrete Probability Distribution.
Moment

Probability mass generating

function, p(x) function, M(t) Mean Variance
Binomial with (z) Pl — pyix (pet + 1 — p)t np np(l — p)
parameters i, p; 3
l=p=1 b1 [ i n

l,\

Poisson with e‘*—l exp{i(e! — 1)) A A
parameter A > 0 b

=112

4 1 1 —
Geometric with pl — py! L{ — = ¥
parameter 1 - -pe P e
0=p=1 =12
1 el "oy r(d — p)
Negative (f: _ 1)p’(l —prr [71] [] - —_— L2
binomial with L= - pe P p*
parameters r, p;
l=p=1 n=r,r+1,..
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Moment Generating Functions

Continuous Probability Distribution.

Moment
generating
Probability density function, f(x) function, M) Mean Variance
L a<x<bh it & I; L 2
a2 : g e 2= a+b b — ar
Uniform over (a, b) fxy=4b—a o o SR
wh — ay 2 12
0 otherwise
. : ; A x =0 A 1 1
Exponential with filx) = ;‘] i 3 r n e
parameter A > 0 S : ‘1'
re My p-]
) 7_( U ry 5 §
Gamma with parameters f(x) = I"(s) ( ) - —
) A=t A A
(S, Ahd = 0 0 x =<0
2.2
B I —(x—p* 20 ot 2
Normal with parameters fix) = e . expiput + — i a°
2 W 2
(o)
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Moment Generating Functions

Theorem

The moment generating function uniquely determines the distribution. That is, if
Mx (t) exists and is finite in some region about t = 0, then the distribution of X is
uniquely determined.

Theorem

The moment generating function of the sum of independent random variables equals
the product of the individual moment generating functions.
Proof:

v
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Moment Generating Functions

Example

Let X and Y be independent binomial random variables with parameters (n, p) and
(m, p), respectively. What is the distribution of X + Y?
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Moment Generating Functions

Example

Let X and Y be independent Poisson random variables with parameters Ay and Az,
respectively. What is the distribution of X + Y?
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Moment Generating Functions

Example
Let X and Y be independent normal random variables with respective parameters
(p1,02) and (u2, 03). What is the distribution of X + Y? \ Ans. X + ¥ ~ N(uy + . 02 + 03). \
v
Monjed H. Samuh — PPU Probability Theory — Term 191 2019/2020 49/53




Moment Generating Functions

Definition (Joint Moment Generating Functions)

For any n random variables Xi, ..., X5, the joint moment generating function,
M(t,. .., t), is defined, for all real values of t, ..., t,, by

M(ti,... .ty =E (et1x1+..l+rnxn)

@ The individual moment generating functions can be obtained from M(t,. .., t,) by
letting all but one of the t’s be 0.

My, (t) = E (e’Xf) = M(0,...,0,i,0,...,0)
where the t is in the i place.

@ The joint moment generating function M(t;, ..., t,) uniquely determines the joint
distribution of Xj, ..., X.
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Moment Generating Functions

Theorem
Xi,..., Xy are independent random variables if and only if

M(t1,. ey tn) = Mx1(t1) X -+ X MX,,(tn)~

Proof:
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Moment Generating Functions

Example

Let X and Y be independent normal random variables, each with mean p and variance
o2. Show that X + Y and X — Y are independent.
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Problems and Exercises

PROBLEMS
PAGE 352:
4,6,7,30,31,33,37,38,40, 45,48, 50, 51
THEORETICAL EXERCISES
PAGE 359:

1,2,19,20,22,25,26,28
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