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Introduction

The expected value of the random variable X is defined by

E(X ) =


∑

x xp(x) if X is a discrete random variable

∞∫
−∞

xf (x)dx if X is a continuous random variable
,

Theorem
If P(a ≤ X ≤ b) = 1, then a ≤ E(X ) ≤ b.
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Expectation of Sums of Random Variables

Suppose that X and Y are random variables and g is a function of two random
variables.

If X and Y have a joint probability mass function p(x , y), then

E (g(X ,Y )) =
∑

y

∑
x

g(x , y)p(x , y).

If X and Y have a joint probability density function f (x , y), then

E (g(X ,Y )) =

∞∫
−∞

∞∫
−∞

g(x , y)f (x , y)dxdy .

Suppose that E(X ) and E(Y ) are both finite and let g(X ,Y ) = X + Y . Then, in
the continuous case,

E (X + Y ) =

∞∫
−∞

∞∫
−∞

(x + y)f (x , y)dxdy = E(X ) + E(Y ).
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Expectation of Sums of Random Variables

Example
Suppose that for random variables X and Y , X ≥ Y . Then E(X ) ≥ E(Y ).

X ≥ Y means for any outcome of the probability experiment, the value of the
random variable X is greater than or equal to the value of the random variable Y .

X ≥ Y is equivalent to X − Y ≥ 0.

It follows that E(X − Y ) ≥ 0.

or, equivalently, E(X ) ≥ E(Y ).

We may show by simple induction proof that if E(Xi ) is finite for all i = 1, 2, . . . , n,
then

E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn).
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Expectation of Sums of Random Variables

Example (The sample mean)
Let X1, . . . ,Xn be independent and identically distributed random variables having
distribution function F and expected value µ. Such a sequence of random variables is
said to constitute a sample from the distribution F . The quantity

X̄ =

∑n
i=1 Xi

n

is called the sample mean. Compute E(X̄ ).

Monjed H. Samuh – PPU Probability Theory – Term 191 2019/2020 6 / 53



Expectation of Sums of Random Variables

Example (Boole’s inequality)
Let A1,A2, . . . ,An denote events, and define the indicator variables
Xi , i = 1, 2, . . . , n by

Xi =


1 if Ai occurs

0 otherwise
,

Let X =
∑n

i=1 Xi denotes the number of the events Ai that occur.

Let

Y =


1 if X ≥ 1

0 otherwise
,

so Y is equal to 1 if at least one of the Ai occurs and is 0 otherwise.
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Expectation of Sums of Random Variables

Example (Boole’s inequality - Cont.)
Now, it is immediate that X ≥ Y .

E(X ) ≥ E(Y ).

E(X ) =
∑n

i=1 P(Ai ).

E(Y ) = P
(⋃n

i=1 Ai
)
.

We obtain Boole’s inequality, namely,

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai ).
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Expectation of Sums of Random Variables

Example (Expectation of a binomial random variable)
Let X1, . . . ,Xn iid Bernoulli with parameter p.

E(Xi ) = p.

X =
∑n

i=1 Xi ∼ Bin(n, p).

E(X ) = np.

Example (Expectation of a negative binomial random variable)
Let X1, . . . ,Xn iid geometric with parameter p.

E(Xi ) = 1
p .

X =
∑r

i=1 Xi ∼ NB(r , p).

E(X ) = r
p .
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Expectation of Sums of Random Variables

Example (Expectation of a hypergeometric random variable)
If n balls are randomly selected from an urn containing N balls of which m are white,
find the expected number of white balls selected.

Let

Xi =

 1 if the i th white ball is selected

0 otherwise
,

E(Xi ) = P(Xi = 1),

E(Xi ) = P(i th white ball is selected)

=

(1
1

)(N−1
n−1

)(N
n

)
=

n
N

X =
∑m

i=1 Xi denote the number of white balls selected.

E(X ) = mn
N .

Monjed H. Samuh – PPU Probability Theory – Term 191 2019/2020 10 / 53



Expectation of Sums of Random Variables

When one is dealing with an infinite collection of random variables Xi , i ≥ 1, each
having a finite expectation (E(Xi ) <∞), it is not necessarily true that

E

(
∞∑
i=1

Xi

)
=
∞∑
i=1

E(Xi ).

To determine when it is valid, we note that
∑∞

i=1 Xi = limn→∞
∑n

i=1 Xi . Thus,

E

(
∞∑
i=1

Xi

)
= E

(
lim

n→∞

n∑
i=1

Xi

)
?
= lim

n→∞
E

(
n∑

i=1

Xi

)
= lim

n→∞

n∑
i=1

E (Xi ) =
∞∑
i=1

E(Xi )

It is valid whenever we are justified in interchanging the expectation and limit
operations.

Although, in general, this interchange is not justified, it can be shown to be valid in
two important special cases:

1 The Xi are all nonnegative random variables. (That is, P(Xi ≥ 0) = 1 for all i).

2
∑∞

i=1 E(|Xi |) <∞.
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Moments of the Number of Events that Occur

For given events A1,A2, . . . ,An, let X be the number of these events that occur.

Define

Ii =


1 if Ai occurs

0 otherwise
,

Because X =
∑n

i=1 Ii , we obtain E(X ) =
∑n

i=1 P(Ai ).

Now suppose we are interested in the number of pairs of events that occur.

Then,

Ii Ij =


1 if both Ai &Aj occur

0 otherwise
,

It follows that the number of pairs is equal to
∑
i<j

Ii Ij .

But because X is the number of events that occur, it also follows that the number
of pairs of events that occur is

(X
2

)
.
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Moments of the Number of Events that Occur(X
2

)
=
∑
i<j

Ii Ij , where there are
(n

2

)
terms in the summation.

Taking expectations yields

E

((
X
2

))
=
∑
i<j

E (Ii Ij ) =
∑
i<j

P (Ai ∩ Aj )

or

E
(

X (X − 1)

2

)
=
∑
i<j

P (Ai ∩ Aj )

giving that E(X 2)− E(X ) = 2
∑
i<j

P (Ai ∩ Aj ).

which yields E(X 2), and thus, Var(X ) = E(X 2)− (E(X ))2.

In general,

E

((
X
k

))
=

∑
i1<i2<···<ik

E (Ii1 Ii2 · · · Iik ) =
∑

i1<i2<···<ik

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik )
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Moments of the Number of Events that Occur

Example (Moments of binomial random variables)
Consider n independent trials, with each trial being a success with probability p.

Let Ai be the event that trial i is a success.

When i 6= j , P(Ai ∩ Aj ) = p2.

Consequently,

E

((
X
2

))
=
∑
i<j

p2 =

(
n
2

)
p2.

or
E(X 2)− E(X ) = n(n − 1)p2.

But,

E(X ) =
n∑

i=1

P(Ai ) = np.

From the preceding slide,

Var(X ) = n(n − 1)p2 + np − (np)2 = np(1− p).
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Covariance, Variance of Sums, and Correlations

Theorem
If X and Y are independent, then, for any functions h and g,

E (g(X )h(Y )) = E (g(X )) E (h(Y )) .

Proof:
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Covariance, Variance of Sums, and Correlations

Definition (Covariance)
The covariance between X and Y , denoted by Cov(X ,Y ), is defined by

Cov(X ,Y ) = E [(X − E(X )) (Y − E(Y ))] .

Cov(X ,Y ) gives us information about the relationship between the random
variables X and Y .

It can be shown that Cov(X ,Y ) = E(XY )− E(X )E(Y ).
Proof:
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Covariance, Variance of Sums, and Correlations

If X and Y are independent, then Cov(X ,Y ) = 0.

However, the converse is not true.

Counter example:
Let X be a random variable such that

P(X = 0) = P(X = 1) = P(X = −1) =
1
3
,

and define Y :

Y =


1 if X = 0

0 if X 6= 0
,

XY = 0 =⇒ E(XY ) = 0.

Also, E(X) = 0.

Thus, Cov(X ,Y ) = 0.

However, it is clear that X and Y are dependent.
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Covariance, Variance of Sums, and Correlations

Theorem
1 Cov(X ,Y ) = Cov(Y ,X ).

2 Cov(X ,X ) = Var(X ).

3 Cov(aX ,Y ) = aCov(X ,Y ).

4 Cov
(∑n

i=1 Xi ,
∑m

j=1 Yj

)
=
∑n

i=1

∑m
j=1 Cov(Xi ,Yj ).
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Covariance, Variance of Sums, and Correlations

Theorem

Var

(
n∑

i=1

Xi

)
= Cov

 n∑
i=1

Xi ,

n∑
j=1

Xj


=

n∑
i=1

n∑
j=1

Cov(Xi ,Xj )

=
n∑

i=1

Var(Xi ) +
∑
i 6=j

Cov(Xi ,Xj )

=
n∑

i=1

Var(Xi ) + 2
∑
i<j

Cov(Xi ,Xj )

Theorem
If X1, . . . ,Xn are pairwise independent, in that Xi and Xj are independent for i 6= j , then

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi ).
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Covariance, Variance of Sums, and Correlations

Var
(

n∑
i=1

aiXi

)
=

n∑
i=1

a2
i Var(Xi ) + 2

∑
i<j

aiajCov(Xi ,Xj ).

Var(aX + bY ) = a2Var(X ) + b2Var(Y ) + 2abCov(X ,Y ).

Cov(aX + b, cY + d) = acCov(X ,Y ).
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Covariance, Variance of Sums, and Correlations

Example
Let X1, . . . ,Xn be independent and identically distributed random variables having
expected value µ and variance σ2.

Let X̄ = 1
n

∑n
i=1 Xi be the sample mean.

The quantities Xi − X̄ , i = 1, . . . , n, are called deviations, as they equal the
differences between the individual data and the sample mean.

The random variable S2 = 1
n−1

∑n
i=1(Xi − X̄ )2 is called the sample variance.

(1) Find Var(X̄ ).
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Covariance, Variance of Sums, and Correlations

(2) Show that E(S2) = σ2.
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Covariance, Variance of Sums, and Correlations

Definition (Correlation)
The correlation of two random variables X and Y , denoted by ρ(X ,Y ), is defined, as
long as Var(X )Var(Y ) is positive, by

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )
.

Theorem

−1 ≤ ρ(X ,Y ) ≤ 1.

Proof:

Hint: Use Cauchy-Schwarz inequality:(
n∑

i=1

X
′
i Y
′
i

)2

≤

(
n∑

i=1

X
′
i

)(
n∑

i=1

Y
′
i

)
.

Set X
′
i = (Xi − X̄ ) and Y

′
i = (Yi − Ȳ ).
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Covariance, Variance of Sums, and Correlations

Properties of ρ:

1 −1 ≤ ρ(X ,Y ) ≤ 1. (Previous Slide)

2 ρ(X ,Y ) = 1 if and only if Y = aX + b for some a > 0.

3 ρ(X ,Y ) = −1 if and only if Y = aX + b for some a < 0.

4 ρ(X ,Y ) measures the degree of linearity between X and Y . A value near +1 or
−1 indicates a high degree of linearity, whereas a value near 0 indicates that such
linearity is absent.

5 A positive value indicates that Y tends to increase when X does, whereas a
negative value indicates that Y tends to decrease when X increases.

6 ρ(X ,Y ) = 0, then X and Y are said to be uncorrelated.
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Covariance, Variance of Sums, and Correlations

Example
Suppose X and Y have a joint pdf :

f (x , y) =


2e−x e−y if 0 ≤ y ≤ x <∞

0 otherwise
,

(1) The marginal pdf of X is given by

fX (x) =

x∫
0

2e−x e−y dy = 2e−x (1− e−x) , x ≥ 0.

(2) The marginal pdf of Y is given by

fY (y) =

∞∫
y

2e−x e−y dx = 2e−2y , y ≥ 0.
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Covariance, Variance of Sums, and Correlations

(3) E(X ) = 3
2 , and Var(X ) = 5

4 .

(4) E(Y ) = 1
2 , and Var(Y ) = 1

4 .

(5) E(XY ) = 1.

(6) Cov(X ,Y ) = 1− 3
2 ×

1
2 = 1

4 .

(7) Cor(X ,Y ) = ρ(X ,Y ) = 1√
5
.
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Covariance, Variance of Sums, and Correlations

Example
Let X1, . . . ,Xn be independent and identically distributed random variables having
variance σ2. Show that

Cov
(
Xi − X̄ , X̄

)
= 0.

We have
Cov

(
Xi − X̄ , X̄

)
= Cov

(
Xi , X̄

)
− Cov

(
X̄ , X̄

)
= Cov

Xi ,
1
n

n∑
j=1

Xj

− Var(X̄ )

=
1
n

n∑
j=1

Cov(Xi ,Xj )−
σ2

n

= 0.

where

Cov(Xi ,Xj ) =


0 if i 6= j by independence

σ2 if i = j since Var(Xi ) = σ2
,
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Covariance, Variance of Sums, and Correlations

Although X̄ and the deviation Xi − X̄ are uncorrelated, they are not, in general,
independent.

However, in the special case where the Xi are normal random variables, it turns
out that not only is X̄ independent of a single deviation, but it is independent of the
entire sequence of deviations Xj − X̄ , j = 1, . . . , n.

The sample mean X̄ and the sample variance S2 are independent.

(n−1)S2

σ2 have a chi-squared distribution with n − 1 degrees of freedom (More
details later).
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Conditional Expectation

Definition (Conditional Expectation – Discrete Case)
Recall that if X and Y are jointly discrete random variables, then the conditional
probability mass function of X , given that Y = y , is defined for all y such that
P(Y = y) > 0, by

pX |Y (x |y) = P (X = x |Y = y) =
p(x , y)

pY (y)
.

It is therefore natural to define, in this case, the conditional expectation of X given
that Y = y , for all values of y such that pY (y) > 0, by

E (X |Y = y) =
∑

x

xP (X = x |Y = y)

=
∑

x

xpX |Y (x |y).

Therefore, if X and Y are independent, then E (X |Y = y) = E(X ).
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Conditional Expectation

Example
If X and Y are independent binomial random variables with identical parameters n and
p, calculate the conditional expected value of X given that X + Y = m.

Let us first calculate the conditional pmf of X given that X + Y = m.

P (X = k |X + Y = m) =
P (X = k ,X + Y = m)

P (X + Y = m)

=
P (X = k ,Y = m − k)

P (X + Y = m)

=
P (X = k) P (Y = m − k)

P (X + Y = m)

=

(n
k

)( n
m−k

)(2n
m

) , k ≤ min(m, n).

Hence, the conditional distribution of X , given that X + Y = m, is the
hypergeometric distribution.

Therefore,
E (X |X + Y = m) =

mn
2n

=
m
2
.
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Conditional Expectation

Definition (Conditional Expectation – Continuous Case)
If X and Y are jointly continuous random variables with a joint probability density
function f (x , y), then the conditional probability density of X , given that Y = y , is
defined for all y such that fy (y) > 0, by

fX |Y (x |y) =
f (x , y)

fY (y)
.

It is therefore natural to define, in this case, the conditional expectation of X given
that Y = y , for all values of y such that fY (y) > 0, by

E (X |Y = y) =

∞∫
−∞

xfX |Y (x |y) dx .
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Conditional Expectation

Example
Suppose that the joint density of X and Y is given by

f (x , y) =
e−x/y e−y

y
, 0 < x <∞, 0 < y <∞.

Compute E (X |Y = y). Ans. X|Y ∼ Exp(1/y).
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Conditional Expectation

Just as conditional probabilities satisfy all of the properties of ordinary
probabilities, so do conditional expectations satisfy the properties of ordinary
expectations.

For instance, such formulas as

E (g(X )|Y = y) =


∑

x g(x)pX |Y (x |y) in the discrete case

∞∫
−∞

g(x)fX |Y (x |y)dx in the continuous case
,

and

E

(
n∑

i=1

Xi |Y = y

)
=

n∑
i=1

E (Xi |Y = y) .
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Conditional Expectation

Theorem
Let us denote by E(X |Y ) that function of the random variable Y whose value at Y = y
is E(X |Y = y).

E(X ) = E [E (X |Y )] =


∑

y E (X |Y = y) P(Y = y) If Y is discrete

∞∫
−∞

E (X |Y = y) fY (y)dy If Y is continuous
,

Proof:

See Example 5f Page 319.
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Conditional Expectation

Definition (Conditional Variance)
The conditional variance of X given that Y = y is defined by

Var(X |Y ) = E
[
(X − E(X |Y ))2 |Y

]

It can be written as

Var(X |Y ) = E(X 2|Y )− (E(X |Y ))2 .

Var(X |Y ) is exactly analogous to the usual definition of variance, but now all
expectations are conditional on the fact that Y is known.
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Conditional Expectation

Theorem

Var(X ) = E [Var(X |Y )] + Var [E(X |Y )] .

Proof:
Var(X |Y ) = E

(
X 2|Y

)
− (E(X |Y ))2.

E [Var(X |Y )] = E(X 2)− E
[
(E(X |Y ))2

]
.

Var [E (X |Y )] = E
[
(E(X |Y ))2

]
− (E(X ))2.
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Moment Generating Functions

Definition (Moment Generating Function)
The moment generating function M(t) of the random variable X is defined for all real
values of t by

M(t) = E
(

etX
)

=


∑

x etx p(x) if X is discrete

∞∫
−∞

etx f (x)dx if X is continuous
,

We call M(t) the moment generating function because all the moments of X can
be obtained by successively differentiating M(t) and then evaluating the result at
t = 0.

For example,

M
′
(t) =

d
dt

E
(

etX
)

= E
(

d
dt

(
etX
))

= E
(

XetX
)

where we have assumed that the interchange of the differentiation and expectation
operators is legitimate.
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Moment Generating Functions

Hence,
M
′
(0) = E(X ).

Similarly,
M
′′

(t) = E
(

X 2etX
)
.

Thus,
M
′′

(0) = E(X 2).

In general, the nth derivative of M(t) is given by

M(n)(t) = E
(

X netX
)
, n ≥ 1.

Implying that,
M(n)(0) = E

(
X n) , n ≥ 1.
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Moment Generating Functions

Example
If X is a binomial random variable with parameters n and p, then

M(t) = E
(

etX
)

=
(

pet + (1− p)
)n
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Moment Generating Functions

Example
If X is a Poisson random variable with parameter λ, then

M(t) = E
(

etX
)

= eλ(et−1)
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Moment Generating Functions

Example
If X is an exponential random variable with parameter λ, then

M(t) = E
(

etX
)

=
λ

λ− t
, t < λ.

We note from this derivation that, for the exponential distribution, M(t) defined only for
values of t < λ.
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Moment Generating Functions

Example

Let X be a normal random variable with parameters µ and σ2.

We first compute the moment generating function of a standard normal random
variable with parameters 0 and 1.

Letting Z be such a random variable, we have

M(t) = E
(

etX
)

=
1√
2π

∞∫
−∞

etx e−
1
2 x2

dx

=
1√
2π

∞∫
−∞

e−
1
2 (x

2−2tx)dx

=
1√
2π

∞∫
−∞

e−
1
2 (x−t)2+ 1

2 t2
dx

= e
1
2 t2
.
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Moment Generating Functions

Example
Hence, the moment generating function of the standard normal random variable Z
is MZ (t) = e

1
2 t2

.

We now compute the moment generating function of a normal random variable
X = µ+ σZ with parameters µ and σ2.

We have
M(t) = E

(
etX
)

= E
(

et(µ+σZ )
)

= eµt+ 1
2σ

2t2
.
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Moment Generating Functions

Monjed H. Samuh – PPU Probability Theory – Term 191 2019/2020 44 / 53



Moment Generating Functions
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Moment Generating Functions

Theorem
The moment generating function uniquely determines the distribution. That is, if
MX (t) exists and is finite in some region about t = 0, then the distribution of X is
uniquely determined.

Theorem
The moment generating function of the sum of independent random variables equals
the product of the individual moment generating functions.
Proof:
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Moment Generating Functions

Example
Let X and Y be independent binomial random variables with parameters (n, p) and
(m, p), respectively. What is the distribution of X + Y?
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Moment Generating Functions

Example
Let X and Y be independent Poisson random variables with parameters λ1 and λ2,
respectively. What is the distribution of X + Y ?
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Moment Generating Functions

Example
Let X and Y be independent normal random variables with respective parameters
(µ1, σ

2
1) and (µ2, σ

2
2). What is the distribution of X + Y ? Ans. X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2 ).
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Moment Generating Functions

Definition (Joint Moment Generating Functions)
For any n random variables X1, . . . ,Xn, the joint moment generating function,
M(t1, . . . , tn), is defined, for all real values of t1, . . . , tn, by

M(t1, . . . , tn) = E
(

et1X1+···+tnXn
)

The individual moment generating functions can be obtained from M(t1, . . . , tn) by
letting all but one of the tj ’s be 0.

MXi (t) = E
(

etXi
)

= M(0, . . . , 0, i, 0, . . . , 0)

where the t is in the i th place.

The joint moment generating function M(t1, . . . , tn) uniquely determines the joint
distribution of X1, . . . ,Xn.

Monjed H. Samuh – PPU Probability Theory – Term 191 2019/2020 50 / 53



Moment Generating Functions

Theorem
X1, . . . ,Xn are independent random variables if and only if

M(t1, . . . , tn) = MX1 (t1)× · · · ×MXn (tn).

Proof:
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Moment Generating Functions

Example
Let X and Y be independent normal random variables, each with mean µ and variance
σ2. Show that X + Y and X − Y are independent.
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Problems and Exercises

PROBLEMS
PAGE 352:

4, 6, 7, 30, 31, 33, 37, 38, 40, 45, 48, 50, 51

THEORETICAL EXERCISES
PAGE 359:

1, 2, 19, 20, 22, 25, 26, 28
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