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Two types of predictors

o Quantitative. (e.g., multiple linear regression)
e Qualitative. (e.g., indicator variables)
This Class:

@ Polynomial Regression Models

@ Interaction Regression Models
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Polynomial Regression Models

@ When the true curvilinear response function is indeed a polynomial
function.

@ When polynomial function is a good approximation to the true
function.
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One-predictor variable-second order

Y: = Bo + Bixi + Brix? + €

where
Xj = X,' - X

e X is centered due to the possible high correlation between X and X2.

@ Regression function: E{Y} = By + f1x + f11x?, quadratic response
function

@ [y is the mean response when x =0, i.e., X = X.
@ (31 is called the linear effect.

@ (311 is called the quadratic effect.

Yang Feng (Columbia University) Regression Models for Quantitative and Quali



One Predictor Variable-Third Order

Y = Bo + Bixi + Pux? + Buxd + e

where
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One Predictor Variable-Higher Orders

@ Employed with special caution.
@ Tends to overfit

@ Poor prediction
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Two Predictors-Second Order

Y; = Bo + Bixi1 + Baxia + Br1xA + Bazxd + Braxiixia + €

where
xji1 = Xi1 — X1, X2 = Xipo — Xo

@ The coefficient (B15 is called the interaction effect coefficient.
@ More on interaction later.

@ Three Predictors- Second Order is similar.
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Implementation of Polynomial Regression Models

o Fitting—Very easy, just use the least squares for multiple linear
regressions since they can all be seen as a multiple regression.

@ Determine the order—Very important step!

Y;: = Bo + Buxi + Brix? + Briaxd + €

Naturally, we want to test whether or not 8111 = 0, or whether or not
both ,811 =0 and ,8111 =0.
How to do the test?
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Extra Sum of Squares

Decomposition SSR into SSR(x), SSR(x?|x) and SSR(x3|x, x?).
o Test whether £111 = 0: use SSR(x3|x, x?).
o Test whether both 11 = 0 and S111 = 0: use SSR(x?, x3|x).

Time for a real example!
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r Comments on Polynomial Regression

@ There are drawbacks.
© Sometimes polynomial models are more expensive in degrees of
freedom than alternative nonlinear models or linear models with
transformed variables.
@ Serious multicollinearity may be present even when the variables are
centered

@ An alternative to using centered variables is to use orthogonal
polynomials.
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Interaction Regression Models

o Additive effects:
E{Y} = A(X0) + H0G) + - + oot (Xp1)
@ General effects with interactions. Example:
E{Y} = Bo+ p1X1 + B2 Xo + B3 X1 X2

@ This cross-product term (33.X1 X5 is called an interaction term.
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Interpretation of Regression Models with Interactions

E{Y} = Bo + B1.X1 + B2 Xo + B3X1.X2

@ The change in mean response with a unit increase in X1 when X5 is
held constant is

B+ B3X2

@ Similarly, a unit increase in X> when Xj is constant:

B + £3X1
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First type of interaction

First, suppose 1 and 3, are positive.
@ Reinforcement (synergistic) type: 33 > 0

E{Y}=10+2X; +5Xo + .5X1 Xz
@ Conditional Effects Plot:

(b)
(a) Reinforcement
Additive Model Interaction Effect
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60 |- 60
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Second type of interaction

o Interference (antagonistic) type: 3 <0

E{Y} =10+ 2X; +5X; — 5X X,

©
@ Interference
Additive Model Interaction Effect
Y Y
60| 60+
X, =3:Kr} =25 + 2
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Implementation of Interaction Regression Models

@ Center the predictor variables to avoid the high multicollinearities
Xik = Xk — X

@ Using prior knowledge to reduce the number of interactions. If we
have 8 predictors, then we have 28 pairwise terms in total. For p
predictors, the number is p(p — 1)/2.
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Implementation of Interaction Regression Models

@ Center the predictor variables to avoid the high multicollinearities
Xik = Xk — X

@ Using prior knowledge to reduce the number of interactions. If we
have 8 predictors, then we have 28 pairwise terms in total. For p
predictors, the number is p(p — 1)/2.

Now a real example...
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Qualitative Predictors

Examples:
@ Gender (male or female)
@ Purchase status (yes or no)
e Disability status (not disabled, partly disabled, fully disabled)
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A study of innovation in insurance industry

@ Objective: related the speed with which a particular insurance
innovation is adopted (Y') to the size of the insurance firm (X;) and
the type of the firm.

@ Response Y': quantitative, continuous
@ Predictor Xi: quantitative,

@ Second predictor: type of firm, stock companies and mutual
companies.
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Qualitative Predictor with Two Classes

Suppose

X, — 1, if stock company;
271 0, otherwise.

0, otherwise.

X; = { 1, if mutual company;

Then, we have the model

Yi = Bo + BiXin + BoXio + B3 Xiz + €
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Suppose, we have n = 4 observations, the first two being stock firms, the
second two be mutual firms. Then

1 Xy 10
1 X 10
X=11 xu 01
1 Xy 0 1
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Suppose, we have n = 4 observations, the first two being stock firms, the
second two be mutual firms. Then

1 X1 10

1 X 10
X=11 x, 01
1 Xu 0 1

@ Observation: first column is equal to the sum of the X, and X3
columns, linear dependent...

@ Solution: A qualitative variables with ¢ classes will be represented by
¢ — 1 indicator variables, each taking on the values 0 and 1.
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Interpretation

Now, we drop the X3 from the regression model:
Yi = Bo + B1Xin + B Xiz + €

where
X1 = size of the firm
X, — 1, if stock company;
271 0, otherwise.
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Interpretation(Cont’)

Number of
Months Elapsed

14

Bo"‘ﬁzé

Yang Feng (Columbia University)

Stock Firms Response Function:
E{Y} = (Bo + B2 + BiXy

Mutual Firms Response Function:
EY} = Bo + BiX

¢~ Bo

X
Size of Firm
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More than Two Classes

@ Regression of tool wear (Y) on tool speed (X1) and tool model (four
classes My, My, M3, My).

@ 4 classes — 3 indicator variables

@ Define
{ 1, if tool model My;
Xo =

0, otherwise.

X — 1, if tool model Mo;
371 0, otherwise.

X, — 1, if tool model Mj;
*7 0 0, otherwise.

@ Then, we have the following first-order regression model:

Yi = Bo + S1Xi1 + BoXio + 53 Xiz + BaXia + €
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Interpretation

Tool Wear Tool Models M3: E{Y} = (B + Ba) + B1X;
Y

Tool Models M2: E{y} = (8y + B3) + B X

Tool Models M4: E{Y} = B + B X;

B3

Bo 7 Tool Models M1: E{Y} = (B, + B2) + B1X

0 %
Tool Speed
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Interpretation

Tool Wear Tool Models M3: E{Y} = (B + Ba) + B1X;
Y

Tool Models M2: E{y} = (8y + B3) + B X

Tool Models M4: E{Y} = B + B X;

B3

Bo 7 Tool Models M1: E{Y} = (B, + B2) + B1X

0 %
Tool Speed
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Some Considerations in Using Indicator Variables

@ An alternative: allocated codes.

@ For example, the predictor variable “frequency of product use” has
three classes: frequent user, occasional user, nonuser. We can use a
single Xj variable to denote it as follows:

3, Frequent User;
X1 = 2, Occasional User;
1, Nonuser.

@ Then, we have the regression model:

Yi = Bo+ B Xin + €
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Difficulties with allocated codes

@ The mean response with the regression function will be:
Class E{Y}

Frequent User Bo + 301
Occasional User | Sy + 201
Nonuser Bo + £1

o Key implication:

E{Y|frequent user} — E{Y|occasional user}

=E{Y/|occasional user} — E{Y|nonuser}

@ Using indicator variables doesn't have this restriction since it has one
more variable to denote them.
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Other Codings for Indicator Variables

@ For the stock company and mutual company data:

X, — 1,  if stock company;
27\ -1, if mutual company.

@ Another alternative: use indicator variable for each of the ¢ classes
and drop the intercept term:

Yi = B1Xi1 + B2 Xio + B3Xi3 + €

where
X1 = size of the firm
X, — 1, if stock company;
271 0, otherwise.

o — 1, if mutual company;
37 ) 0, otherwise.
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Interactions between Quantitative and Qualitative

Variables

@ Almost the same as the regular interactions
@ Read Chapter 8.5 and 8.6 after class
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Comparison of Two or More Regression Functions

Three examples:

@ A company operates two productions lines for making soap bars. For
each line, the relationship between the speed of the line and the
amount of scrap for the day was studied.

@ An economist is studying the relationship between amount of savings
and level of income for middle-income families from urban and rural
areas, based on independent samples from the two populations.

@ Two instruments were constructed for a company to identical
specifications to measure pressure in an industrial process.
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Soap Production Lines Example

@ Y': scrap, Xi: line speed. X: code for production line.
@ Interaction model:

Yi = Bo + B1Xi1 + BaXiz + B3 Xi1 Xio + €;
where
Xi1 = line speed

X — 1, if production line 1;
270 0, if production line 2.

i=1,2,---,27
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