Probability Theory

Chapter 6: Jointly Distributed Random Variables

Lecturer

Dr. Monjed H. Samuh

Applied Mathematics \& Physics Department
Palestine Polytechnic University
(monjedsamuh@ppu.edu)

Term 191

Table of Contents

(9) Joint Distribution Functions
(2) Independent Random Variables
(3) Sums of Independent Random Variables
(4) Conditional Distributions: Discrete Case
(5) Conditional Distributions: Continuous Case

6 Order Statistics
(7) Joint Probability Distribution of Functions of Random Variables

Joint Distribution Functions

- Sometimes we are interested in studying the relationship between two (or more) random variables X and Y.
- Examples:
(1) X person's height and Y person's weight.
(2) X person's total cholesterol and Y number of hours the person exercises per week.
(3) X price of an item and Y number of item sold.

Joint Distribution Functions

- For any two random variables X and Y, the joint cumulative probability distribution function (jcdf) of X and Y is given by

$$
F(x, y)=P(X \leq x, Y \leq y), \quad-\infty<x, y<\infty .
$$

- The cdf of X can be obtained from the $j c d f$ of X and Y as follows:

$$
\begin{aligned}
F_{x}(x) & =P(X \leq x) \\
& =P(X \leq x, Y<\infty) \\
& =P\left(\lim _{y \rightarrow \infty}\{X \leq x, Y \leq y\}\right) \\
& =\lim _{y \rightarrow \infty} P(X \leq x, Y \leq y) \\
& =\lim _{y \rightarrow \infty} F(x, y) \\
& =F(x, \infty) .
\end{aligned}
$$

- Similarly, the cdf of Y is given by $F_{Y}(y)=F(\infty, y)$.
- F_{X} and F_{Y} are sometimes referred to as the marginal distributions of X and Y.

Joint Distribution Functions

- $P(X>x, Y>y)=1-F_{X}(x)-F_{Y}(y)+F(x, y)$.

Proof:

$$
\begin{aligned}
P(X>x, Y>y) & =1-P\left(\{X>x, Y>y\}^{c}\right) \\
& =1-P\left(\{X>x\}^{c} \cup\{Y>y\}^{c}\right) \\
& =1-P(\{X \leq x\} \cup\{Y \leq y\}) \\
& =1-[P(X \leq x)+P(Y \leq y)-P(X \leq x, Y \leq y)] \\
& =1-F_{X}(x)-F_{Y}(y)+F(x, y) .
\end{aligned}
$$

- $P\left(x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right)=F\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right)$, whenever $x_{1}<x_{2}$ and $y_{1}<y_{2}$.

HWK

Joint Distribution Functions

- In the case when X and Y are both discrete random variables, it is convenient to define the joint probability mass function of X and Y by

$$
p(x, y)=P(X=x, Y=y)
$$

- $\sum_{\forall x} \sum_{\forall y} p(x, y)=1$.
- The probability mass function of X can be obtained from $p(x, y)$ by

$$
p_{X}(x)=P(X=x)=\sum_{y: p(x, y)>0} p(x, y)
$$

- Similarly,

$$
p_{Y}(y)=P(Y=y)=\sum_{x: p(x, y)>0} p(x, y)
$$

Joint Distribution Functions

Example

Suppose that 3 balls are randomly selected from an urn containing 3 red, 4 white, and 5 blue balls. If we let X and Y denote, respectively, the number of red and white balls chosen, then the joint probability mass function of X and Y, $p(x, y)=P(X=x, Y=y)$, is given by

Joint Distribution Functions

Example

A local supermarket has three checkout counters. Two customers arrive at the counters at different times when the counters are serving no other customers. Each customer chooses a counter at random, independently of the other. Let Y_{1} denote the number of customers who choose counter 1 and Y_{2}, the number who select counter 2. Find the joint probability function of Y_{1} and Y_{2}.

Joint Distribution Functions

Example

Tossing a fair coin three times; let X denote the number of heads on the first two tosses, and Y denote the number of heads on the three tosses.
(1) Find the joint pdf of X and Y.
(2) Find the marginal pdf of X.

Ans. $\{(0,2 / 8),(1,4 / 8),(2,2 / 8)\}$.
(3) Find the marginal pdf of Y.

Ans. $\{(0,1 / 8),(1,3 / 8),(2,3 / 8),(3,1 / 8)\}$.

Joint Distribution Functions

(4) Find $P(X>Y)$.
(5) Find $P(X+Y=2)$.

Ans. 2/8.

Joint Distribution Functions

Definition (Joint Probability Density Function)

We say that X and Y are jointly continuous if there exists a function $f(x, y) \geq 0$, defined for all real x and $y(\mathbb{R} \times \mathbb{R})$, having the property that, for every set C of pairs of real numbers

$$
P((X, Y) \in C)=\iint_{(x, y) \in C} f(x, y) d x d y, \quad C \subset \mathbb{R}^{2}
$$

$f(x, y)$ is called the joint pdf of X and Y.

- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.
- If A and B are any sets of real numbers, then, by defining $C=\{(x, y): x \in A, y \in B\}$, we have

$$
P(X \in A, Y \in B)=\int_{B} \int_{A} f(x, y) d x d y=\int_{A} \int_{B} f(x, y) d y d x .
$$

Joint Distribution Functions

- Because

$$
\begin{aligned}
F(x, y) & =P(X \leq x, Y \leq y) \\
& =P(X \in(-\infty, x], Y \in(-\infty, y]) \\
& =\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) d u d v
\end{aligned}
$$

it follows, upon differentiation, that

$$
f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

wherever the partial derivatives are defined.

Joint Distribution Functions

Theorem (Marginal pdf's)

If X and Y are jointly continuous, they are individually continuous, and their probability density functions can be obtained as follows:

- For the random variable X :

$$
\begin{aligned}
P(X \in A) & =P(X \in A, Y \in(-\infty, \infty)) \\
& =\int_{A} \int_{-\infty}^{\infty} f(x, y) d y d x=\int_{A} f_{X}(x) d x
\end{aligned}
$$

where $f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y$ is thus the probability density function of X.

- Similarly, the probability density function of Y is given by

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x .
$$

Joint Distribution Functions

Example

The joint density function of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{ll}
c & \text { if } 0<x<1,0<y<1 \\
0 & \text { otherwise }
\end{array},\right.
$$

(1) Compute c.

Ans. $c=1$.
(2) Compute $P(0.2<X<0.5,0<Y<0.7)$.

Joint Distribution Functions

Example

The joint density function of X and Y is given by

$$
f(x, y)= \begin{cases}c & \text { if } 0<x<1,0<y<1, y \leq x \\ 0 & \text { otherwise }\end{cases}
$$

(1) Compute c.

Ans. $c=2$.
(2) Compute $P(0<X<0.5,0<Y<0.5)$.

Joint Distribution Functions

(3) Compute $P(0<X<0.5,0<Y<0.5)$.

$$
\text { Ans. } c=0.5
$$

(4) Find the marginal pdf of X.
(5) Find the marginal pdf of Y.

Ans. $2(1-y), 0<y<1$.

Joint Distribution Functions

Example

The joint density function of X and Y is given by

$$
f(x, y)= \begin{cases}2 & \text { if } 0<x<1,0<y<1,0<x+y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(1) Compute $P(X<3 / 4, Y<3 / 4)$.

Joint Distribution Functions

(2) Compute $P(X<0.5, Y<0.5)$.
(3) Compute $P(0<X<0.5)$.
(4) Find the marginal pdf of Y.

Joint Distribution Functions

Example

The joint density function of X and Y is given by

$$
f(x, y)= \begin{cases}k x y & \text { if } x>0, y>0, x+y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(1) Compute k.

Ans. $k=24$.

Joint Distribution Functions

(2) Find the marginal pdf of X.

Ans. $f_{X}(x)=12 x(1-x)^{2}, \quad 0 \leq x \leq 1$.
(3) Find the marginal pdf of Y.

Ans. $f_{Y}(y)=12 y(1-y)^{2}, \quad 0 \leq y \leq 1$.
(4) Find $E(X), E(Y)$, $\operatorname{Var}(X)$, and $\operatorname{Var}(Y)$.

Joint Distribution Functions

Example

The joint density function of X and Y is given by

$$
f(x, y)= \begin{cases}2 e^{-x} e^{-2 y} & \text { if } x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

(1) Compute $P(X>1, Y<1)$.

Joint Distribution Functions

(2) $P(X<Y)$.
(3) $P(X<a)$.

Ans. $1-e^{-a}$.

Joint Distribution Functions

Example

The joint density function of X and Y is given by

$$
f(x, y)= \begin{cases}e^{-(x+y)} & \text { if } x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the density function of the random variable $Z=\frac{X}{Y}$.

Independent Random Variables

Definition (Independence)

The random variables X and Y are said to be independent if,

$$
P(X \in A, Y \in B)=P(X \in A) P(Y \in B), \quad \forall A, B \subset \mathbb{R} .
$$

In other words, X and Y are independent if the events $E_{A}=\{X \in A\}$ and
$E_{B}=\{X \in B\}$ are independent.

- Let $A=(-\infty, x]$ and $B=(-\infty, y]$, then X and Y are independent iff

$$
P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y), \quad \forall x, y .
$$

- In terms of F, X and Y are independent iff

$$
F(x, y)=F_{X}(x) F_{Y}(y), \quad \forall x, y .
$$

Independent Random Variables

- When X and Y are discrete random variables, the condition of independence is equivalent to

$$
p(x, y)=p_{X}(x) p_{Y}(y), \quad \forall x, y
$$

- When X and Y are continuous random variables, the condition of independence is equivalent to

$$
f(x, y)=f_{X}(x) f_{Y}(y), \quad \forall x, y .
$$

- Thus, X and Y are independent if knowing the value of one does not change the distribution of the other.
- Random variables that are not independent are said to be dependent.

Independent Random Variables

Example

The joint density function of X and Y is given by

$$
f(x, y)= \begin{cases}6 e^{-2 x} e^{-3 y} & \text { if } x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Are these random variables independent?

Independent Random Variables

Example

The joint density function of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{ll}
24 x y & \text { for } 0<x<1,0<y<1,0<x+y<1 \\
0 & \text { otherwise }
\end{array},\right.
$$

Are X and Y independent?

Independent Random Variables

Definition

In general, the n random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be independent if, for all sets of real numbers $A_{1}, A_{2}, \ldots, A_{n}$,

$$
P\left(X_{1} \in A_{1}, X_{2} \in A_{2}, \ldots, X_{n} \in A_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \in A_{i}\right)
$$

Equivalently,

$$
P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq x_{i}\right), \quad \forall x_{1}, x_{2}, \ldots, x_{n} .
$$

Independent Random Variables

Example

Let X, Y, Z be independent and uniformly distributed over (0,1). Compute $P(X \geq Y Z)$.

Sums of Independent Random Variables

Example

If X and Y are independent random variables, both uniformly distributed on $(0,1)$, calculate the probability density of $X+Y$.

Solution:

- Let $Z=X+Y$, then
- the pdf of Z is given by

$$
f_{z}(z)= \begin{cases}z & \text { for } 0<z<1 \\ 2-z & \text { for } 1<z<2 \\ 0 & \text { otherwise }\end{cases}
$$

- The random variable Z is said to have a triangular distribution.

Sums of Independent Random Variables

Theorem (Closed under Convolutions)

If X and Y are independent gamma random variables with respective parameters $\left(\alpha_{1}, \lambda\right)$ and $\left(\alpha_{2}, \lambda\right)$, then $X+Y$ is a gamma random variable with parameters $\left(\alpha_{1}+\alpha_{2}, \lambda\right)$.

Proof: Next Chapter.

Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent gamma random variables with respective parameters $\left(\alpha_{i}, \lambda\right)$, then $\sum_{i=1}^{n} X_{i}$ is gamma with parameters $\left(\sum_{i=1}^{n} \alpha_{i}, \lambda\right)$.

Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$, are independent random variables that are normally distributed with respective parameters $\mu_{i}, \sigma_{i}^{2}, i=1, \ldots, n$, then $\sum_{i=1}^{n} X_{i}$ is normally distributed with parameters $\sum_{i=1}^{n} \mu_{i}$ and $\sum_{i=1}^{n} \sigma_{i}^{2}$.
Proof: Next Chapter.

Sums of Independent Random Variables

Example

Let X_{1} and X_{2} be independent random variables with common exponential density with $\lambda=1$, Find the pdf of $Y=X_{1}+X_{2}$.

Ans. $Y \sim G a(2,1)$.

Sums of Independent Random Variables

Example

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent exponential random variables, each having parameter λ, then $\sum_{i=1}^{n} X_{i}$ is gamma with parameters (n, λ).

Sums of Independent Random Variables

Example

Let $Z \sim N(0,1)$, then find the $p d f$ of Z^{2}.

$$
\begin{aligned}
f_{Z^{2}}(y) & =\frac{1}{2 \sqrt{y}}\left[f_{Z}(\sqrt{y})+f_{Z}(-\sqrt{y})\right] \\
& =\frac{\frac{1}{2} e^{-y / 2}(y / 2)^{1 / 2-1}}{\sqrt{\pi}}
\end{aligned}
$$

That is $Z^{2} \sim G a\left(\frac{1}{2}, \frac{1}{2}\right)=\chi_{1}^{2}$.

Sums of Independent Random Variables

Theorem

If $Z_{1}, Z_{2}, \ldots, Z_{n}$ are independent standard normal random variables, then $\sum_{i=1}^{n} Z_{i}^{2}$ is distributed as $\chi_{n}^{2}=G a\left(\frac{n}{2}, \frac{1}{2}\right)$.

Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$, are independent Poisson random variables with respective parameters $\lambda_{i}, i=1, \ldots, n$, then $\sum_{i=1}^{n} X_{i}$ is distributed as Poisson with parameter $\sum_{i=1}^{n} \lambda_{i}$.
Proof: Next Chapter.

Theorem

If $X_{1}, X_{2}, \ldots, X_{n}$, are independent binomial random variables, each having parameters $\left(m_{i}, p\right), i=1, \ldots, n$, then $\sum_{i=1}^{n} X_{i}$ is distributed as binomial with parameters $\left(\sum_{i=1}^{n} m_{i}, p\right)$.
Proof: Next Chapter.

Conditional Distributions: Discrete Case

- For any two events A and B, the conditional probability of A given B is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Let $A=\{X=x\}$ and $B=\{Y=x\}$, then we have the following definition.

Definition

- If X and Y are discrete random variables with joint pmf $p(x, y)$, then we define the conditional probability mass function of X given that $Y=y$, by

$$
p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{p(x, y)}{p_{Y}(y)} .
$$

- Similarly, the conditional probability distribution function of X given that $Y=y$ is defined by

$$
F_{X \mid Y}(x \mid y)=P(X \leq x \mid Y=y)=\sum_{x: X \leq x} p_{X \mid Y}(x \mid y)
$$

Conditional Distributions: Discrete Case

- Excercise: Verify that $p_{X \mid Y}(x \mid y)$ is a pmf.
- For any events A and B,

$$
P(X \in A \mid Y=y)=\sum_{x \in A} p_{X \mid Y}(x \mid y), \quad A \subset R_{X},
$$

and

$$
P(Y \in B \mid X=x)=\sum_{y \in B} p_{Y \mid X}(y \mid x), \quad B \subset R_{Y} .
$$

- If X and Y are independent, then the conditional probability mass function of X given $Y=y$ is equal to the unconditioned probability mass function:

$$
p_{X \mid Y}(x \mid y)=\frac{p(x, y)}{p_{Y}(y)}=\frac{p_{X}(x) p_{Y}(y)}{p_{Y}(y)}=p_{X}(x) .
$$

Conditional Distributions: Discrete Case

Example

Suppose that $p(x, y)$, the joint probability mass function of X and Y, is given by

$$
p(0,0)=0.4, p(0,1)=0.2, p(1,0)=0.1, p(1,1)=0.3 .
$$

(1) Calculate the conditional probability mass function of X given that $Y=1$.
(2) Compute $P(0 \leq X \leq 1 \mid Y=1)$.

Conditional Distributions: Discrete Case

Example

A balanced die with 3 faces, numbered $1,2,3$ is rolled twice. Let X be the min of the two numbers obtained, and Y be the max of the two numbers obtained.
(0) Obtain the joint pdf of (X, Y).

```
Ans. {(1, 1, 1/9), (1, 2, 2/9), (1, 3, 2/9), (2, 2, 1/9), (2, 3, 2/9), (3, 3, 1/9)}.
```

(2) Compute $P(X=x \mid Y=2)$.

Ans. $\{(1,2 / 3),(2,1 / 3)\}$.
(c) Compute $P(Y=y \mid X=1)$.

Ans. $\{(1,1 / 5),(2,2 / 5),(3,2 / 5)\}$.

Conditional Distributions: Discrete Case

Example

If X and Y are independent Poisson random variables with respective parameters λ_{1} and λ_{2}, calculate the conditional distribution of X given that $X+Y=n$.

$$
\text { Ans. }(X \mid X+Y) \sim \operatorname{Bin}\left(n, \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)
$$

Conditional Distributions: Continuous Case

Definition

- If X and Y are continuous random variables with joint pdf $f(x, y)$, then we define the conditional probability density function of X given that $Y=y$, by

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

- If X and Y are jointly continuous, then, for any set A :

$$
P(X \in A \mid Y=y)=\int_{A} f_{X \mid Y}(x \mid y) d x
$$

- In particular, by letting $A=(-\infty, a]$, we can define the conditional cumulative distribution function of X given that $Y=y$ by

$$
F_{X \mid Y}(a \mid y)=P(X \leq a \mid Y=y)=\int_{-\infty}^{a} f_{X \mid Y}(x \mid y) d x
$$

- If X and Y are independent continuous random variables, then the conditional pdf of X given $Y=y$ is just the unconditional density of X.

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)}=f_{X}(x) .
$$

Conditional Distributions: Continuous Case

Example

The joint density of X and Y is given by:

$$
f(x, y)= \begin{cases}\frac{12}{5} x(2-x-y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Compute the conditional density of X given that $Y=y$, where $0<y<1$.

$$
\text { Ans. } f_{X \mid Y}(x \mid y)=\frac{x(2-x-y)}{\frac{2}{3}-\frac{y}{2}}
$$

- For example, when $y=\frac{1}{3}: f_{X \mid Y}\left(x \left\lvert\, \frac{1}{3}\right.\right)=\frac{10}{3} x-2 x^{2}, \quad 0<x<1$.
- For checking: $\int_{0}^{1} f_{X \mid Y}\left(x \left\lvert\, \frac{1}{3}\right.\right) d x=1$.

Conditional Distributions: Continuous Case

Example

The joint density of X and Y is given by:

$$
f(x, y)= \begin{cases}\frac{x+y}{4} & \text { for } 0<x<y<2 \\ 0 & \text { otherwise }\end{cases}
$$

(1) Find the conditional density of X given that $Y=y$.

$$
\text { Ans. } f_{X \mid Y}(x \mid y)=\frac{2(x+y)}{3 y^{2}}
$$

- Note that $\int_{0}^{y} f_{X \mid Y}(x \mid y)=1$.

Conditional Distributions: Continuous Case

(2) Compute $f_{X \mid Y}(X \mid 1.5)$.

Ans. $\frac{8}{27}(x+1.5), \quad 0<x<1.5$.
(3) Compute $P(X<1 \mid Y=1.5)$.

Conditional Distributions: Continuous Case

Definition (The t-Distribution)

If Z and Y are independent, with Z having a standard normal distribution and Y having a χ^{2}-distribution with n degrees of freedom, then the random variable T defined by

$$
T=\frac{Z}{\sqrt{Y / n}}
$$

is said to have a t-distribution with n degrees of freedom. Its density function is given by

$$
f_{T}(t)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-(n+1) / 2}, \quad-\infty<t<\infty .
$$

Conditional Distributions: Continuous Case

Definition (The Bivariate Normal Distribution)

Random variables X and Y are said to have a bivariate normal distribution if their joint pdf has the form
$f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)\right]\right\}$,
where ρ is the correlation between X and Y (More about this next chapter).

Exercises:

- $X \sim N\left(\mu_{x}, \sigma_{X}^{2}\right)$.
- $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.
- $X \left\lvert\, Y \sim N\left(\mu_{X}+\rho \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right), \sigma_{X}^{2}\left(1-\rho^{2}\right)\right)\right.$.
- $Y \left\lvert\, X \sim N\left(\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right), \sigma_{Y}^{2}\left(1-\rho^{2}\right)\right)\right.$.

Conditional Distributions: Continuous Case

Example

Let $(X, Y) \sim B N(160,60,225,256,0.7)$.
(1) Compute $P(X<175)$.
(2) Compute $P(X<175 \mid y=65)$.

Order Statistics

Definition (Order Statistics)

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent and identically distributed (iid) continuous random variables having a common density f and distribution function F. Define

- $X_{(1)}=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
- $X_{(2)}=2^{n d} \min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
- $X_{(j)}=j^{\text {th }} \min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
- $X_{(n)}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

The ordered values $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ are known as the order statistics corresponding to the random variables $X_{1}, X_{2}, \ldots, X_{n}$.

Order Statistics

- For two random variables, X_{1} and X_{2}, we have:
(1) $P\left(X_{1} \leq X_{2}\right)=\square$.
(2) $P\left(X_{(1)} \leq X_{(2)}\right)=$ \square
- For three random variables, X_{1}, X_{2}, and X_{3}, we have:
(1) $P\left(X_{1} \leq X_{2} \leq X_{3}\right)=$
(2) $P\left(X_{(1)} \leq X_{(2)} \leq X_{(3)}\right)=\square$.
- For n random variables, $X_{1}, X_{2}, \ldots, X_{n}$, we have:
(1) $P\left(X_{1} \leq X_{2} \leq \cdots \leq X_{n}\right)=$ \qquad
(2) $P\left(X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}\right)=\square$.

Order Statistics

Example

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid $f(x)$. Let $Y=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)=X_{(n)}$. Find the density function of Y.

Ans. $f_{Y}(y)=n F^{n-1}(y) f(y)$.

Order Statistics

Example

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid $f(x)$. Let $Y=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)=X_{(1)}$. Find the density function of Y.

Ans. $f_{Y}(y)=n(1-F(y))^{n-1} f(y)$.

Order Statistics

Example

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid $U(0,1)$. Let $Y_{1}=X_{(1)}$ and $Y_{n}=X_{(n)}$.
(c) Find the density function of Y_{1}.

Ans. $Y_{1} \sim \operatorname{Be}(1, n)$.
(2) Find the density function of Y_{n}.

Ans. $Y_{n} \sim \operatorname{Be}(n, 1)$.
(3) Compute $E\left(Y_{n}\right)$.

Order Statistics

- The jpdf of $Y_{1}=X_{(1)}, Y_{2}=X_{(2)}, \ldots, Y_{n}=X_{(n)}$ is given by

$$
f_{Y_{1}, y_{2}, \ldots, \gamma_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=n!f\left(y_{1}\right) f\left(y_{2}\right) \cdots f\left(y_{n}\right), \quad y_{1}<y_{2}<\cdots<y_{n} ~}
$$

Proof: Let us consider the case $n=2$ and find the joint pdf for Y_{1} and Y_{2}.

Order Statistics

- The density function of the $j^{\text {th }}$-order statistic $Y_{j}=X_{(j)}$ is given by

$$
f_{y_{j}}(y)=\binom{n}{j-1, n-j, 1}[F(y)]^{j-1}[1-F(y)]^{n-j} f(y) .
$$

Order Statistics

- The joint pdf of the order statistics $Y_{i}=X_{(i)}$ and $Y_{j}=X_{(j)}$ when $i<j$ is

$$
f_{Y_{i}}, Y_{j}\left(y_{i}, y_{j}\right)=\binom{n}{i-1, j-i-1, n-j}\left[F\left(y_{i}\right)\right]^{i-1}\left[F\left(y_{j}\right)-F\left(y_{i}\right)\right]^{j-i-1}\left[1-F\left(y_{j}\right)\right]^{n-j} f\left(y_{i}\right) f\left(y_{j}\right), \quad y_{i}<y_{j} .
$$

Order Statistics

Example (Distribution of the range of a random sample)

Suppose that n iid random variables $X_{1}, X_{2}, \ldots, X_{n}$ are observed. The random variable R defined by $R=X_{(n)}-X_{(1)}$ is called the range of the observed random variables. If the random variables X_{i} have distribution function F and density function f, then find the distribution of R.

Joint Probability Distribution of Functions of Random Variables

Theorem (Transformation Technique (univariate case))
Let X be a continuous random variable having pdf $f_{X}(x)$. Suppose that $g(x)$ is a strictly monotonic (increasing or decreasing), differentiable (and thus continuous) function of x. Then the random variable Y defined by $Y=g(X)$ has a pdf given by

$$
f_{Y}(y)=\left|\frac{d}{d y} g^{-1}(y)\right| f_{X}\left(g^{-1}(y)\right),
$$

where $g^{-1}(y)$ is defined to equal that value of x such that $g(x)=y$.

Example

Let X have the pdf given by $f_{x}(x)=2 x, 0<x<1$. Find the pdf of $Y=-4 X+3$.
Ans. $f_{Y}(y)=(3-y) / 8,-1<y<3$.

Joint Probability Distribution of Functions of Random Variables

- Let $\left(X_{1}, X_{2}\right)$ be jointly continuous random variables with joint pdf $f_{x_{1}, X_{2}}\left(x_{1}, x_{2}\right)$. It is sometimes necessary to obtain the joint distribution of the random variables Y_{1} and Y_{2}, which arise as functions of X_{1} and X_{2}.
- Specifically, let $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$ for some functions g_{1} and g_{2}. Assume that the functions g_{1} and g_{2} satisfy the following conditions:
(1) The equations $y_{1}=g_{1}\left(x_{1}, x_{2}\right)$ and $y_{2}=g_{2}\left(x_{1}, x_{2}\right)$ can be uniquely solved for x_{1} and x_{2} in terms of y_{1} and y_{2}, with solutions given by, say, $x_{1}=h_{1}\left(y_{1}, y_{2}\right), x_{2}=h_{2}\left(y_{1}, y_{2}\right)$.
(2) The functions g_{1} and g_{2} have continuous partial derivatives at all points (x_{1}, x_{2}) and are such that the 2×2 determinant

$$
J\left(x_{1}, x_{2}\right)=\left|\begin{array}{ll}
\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} \\
\frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}}
\end{array}\right|=\frac{\partial g_{1}}{\partial x_{1}} \frac{\partial g_{2}}{\partial x_{2}}-\frac{\partial g_{1}}{\partial x_{2}} \frac{\partial g_{2}}{\partial x_{1}} \neq 0
$$

at all point $\left(x_{1}, x_{2}\right)$.

- Under these two conditions, it can be shown that the random variables Y_{1} and Y_{2} are jointly continuous with joint density function given by

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)\left|J\left(x_{1}, x_{2}\right)\right|^{-1}
$$

where $x_{1}=h_{1}\left(y_{1}, y_{2}\right)$, and $x_{2}=h_{2}\left(y_{1}, y_{2}\right)$.

Joint Probability Distribution of Functions of Random Variables

Example

Let X_{1} and X_{2} be jointly continuous random variables with probability density function $f_{X_{1}, X_{2}}$. Let $Y_{1}=X_{1}+X_{2}, Y_{2}=X_{1}-X_{2}$. Find the joint density function of Y_{1} and Y_{2} in terms of $f_{X_{1}, X_{2}}$.

$$
\text { Ans. } f_{Y_{1}}, Y_{2}\left(y_{1}, y_{2}\right)=\frac{1}{2} f_{X_{1}}, x_{2}\left(\frac{1}{2}\left(y_{1}+y_{2}\right), \frac{1}{2}\left(y_{1}-y_{2}\right)\right) \text {. }
$$

Joint Probability Distribution of Functions of Random Variables

- If X_{1} and X_{2} are iid $U(0,1)$, then

$$
f_{y_{1}, y_{2}}\left(y_{1}, y_{2}\right)= \begin{cases}\frac{1}{2} & \text { for } 0<y_{1}+y_{2}<2,0<y_{1}-y_{2}<2 \\ 0 & \text { otherwise }\end{cases}
$$

- If X_{1} and X_{2} are independent exponential random variables with respective parameters λ_{1} and λ_{2}, then

$$
f_{y_{1}, y_{2}}\left(y_{1}, y_{2}\right)= \begin{cases}\frac{\lambda_{1} \lambda_{2}}{2} \exp \left\{-\lambda_{1}\left(\frac{y_{1}+y_{2}}{2}\right)-\lambda_{2}\left(\frac{y_{1}-y_{2}}{2}\right)\right\} & \text { for } 0<y_{1}+y_{2}, 0<y_{1}-y_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Joint Probability Distribution of Functions of Random Variables

- If X_{1} and X_{2} are iid $N(0,1)$, then

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =\frac{1}{4 \pi} e^{-\left[\left(\frac{y_{1}+y_{2}}{8}\right)^{2}+\left(\frac{y_{1}-y_{2}}{8}\right)^{2}\right]} \\
& =\frac{1}{\sqrt{4 \pi}} e^{-\frac{y_{1}^{2}}{4}} \frac{1}{\sqrt{4 \pi}} e^{-\frac{y_{2}^{2}}{4}}, \quad-\infty<y_{1}, y_{2}<\infty
\end{aligned}
$$

- $X_{1}+X_{2}$ and $X_{1}-X_{2}$ are normal with mean 0 and variance 2 .
- $X_{1}+X_{2}$ and $X_{1}-X_{2}$ are independent.

Theorem

If X_{1} and X_{2} are independent random variables having a common distribution function F, then $X_{1}+X_{2}$ will be independent of $X_{1}-X_{2}$ if and only if F is a normal distribution function.

Joint Probability Distribution of Functions of Random Variables

Example

If X and Y are independent gamma random variables with parameters (α, λ) and (β, λ), respectively, compute the joint density of $U=X+Y$ and $V=\frac{X}{X+Y}$.

Solution:

- The joint density of X and Y is given by

$$
f_{X, Y}(x, y)=\frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha) \Gamma(\beta)} e^{-\lambda(x+y)} x^{\alpha-1} y^{\beta-1}, \quad x, y>0 .
$$

- If $g_{1}(x, y)=x+y$ and $g_{2}(x, y)=\frac{x}{x+y}$, then

$$
J(x, y)=\left|\begin{array}{cc}
1 & 1 \\
\frac{y}{(x+y)^{2}} & \frac{-x}{(x+y)^{2}}
\end{array}\right|=\frac{-1}{x+y}
$$

Joint Probability Distribution of Functions of Random Variables

Example

Solution (Cont'd):

- As the equations $u=x+y, v=\frac{x}{x+y}$ have their solutions $x=u v$ and $y=u(1-v)$, we see that

$$
\begin{aligned}
f_{U, v}(u, v) & =u f_{X, Y}(u v, u(1-v)) \\
& =\frac{\lambda e^{-\lambda u}(\lambda u)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)} \frac{\Gamma(\alpha+\beta) v^{\alpha-1}(1-v)^{\beta-1}}{\Gamma(\alpha) \Gamma(\beta)}, \quad u>0,0<v<1 .
\end{aligned}
$$

- $X+Y$ and $\frac{X}{(X+Y)}$ are independent.
- $X+Y$ having a gamma distribution with parameters $(\alpha+\beta, \lambda)$ and $\frac{X}{(X+Y)}$ having a beta distribution with parameters (α, β).

Joint Probability Distribution of Functions of Random Variables

Example

Let X_{1} and X_{2} be independent with $f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=e^{-x_{1}} e^{-x_{2}}, x_{1}, x_{2}>0$. Let $Y=X_{1}+X_{2}$. Obtain the pdf of Y.

$$
\text { Ans. } f_{Y}(y)=y e^{-y}, y>0
$$

Joint Probability Distribution of Functions of Random Variables

Example

Let X_{1} and X_{2} be iid $N(0,1)$. Obtain the pdf of $Y=\frac{X_{2}}{X_{1}}$.

$$
\text { Ans. Cauchy with } \theta=0 ; f_{Y}(y)=\frac{1}{\pi\left(1+y^{2}\right)},-\infty<y<\infty
$$

Joint Probability Distribution of Functions of Random Variables

Example

Let X_{1}, X_{2}, and X_{3} be independent standard normal random variables. If
$Y_{1}=X_{1}+X_{2}+X_{3}, Y_{2}=X_{1}-X_{2}$, and $Y_{3}=X_{1}-X_{3}$, compute the joint density function of Y_{1}, Y_{2}, Y_{3}.

Solution:

- The joint density of X_{1}, X_{2} and X_{3} is given by

$$
f_{x_{1}, x_{2}, x_{3}}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{(2 \pi)^{3 / 2}} e^{-\frac{1}{2} \sum_{i=1}^{3} x_{i}}, \quad-\infty<x_{1}, x_{2}, x_{3}<\infty .
$$

- If $g_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}, g_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2}$, and $g_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{3}$, then

$$
J\left(x_{1}, x_{2}, x_{3}\right)=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right|=3
$$

Joint Probability Distribution of Functions of Random Variables

Example

Solution (Cont'd):

- As the equations $y_{1}=x_{1}+x_{2}+x_{3}, y_{2}=x_{1}-x_{2}$, and $y_{3}=x_{1}-x_{3}$ have their solutions $x_{1}=\frac{y_{1}+y_{2}+y_{3}}{3}, x_{2}=\frac{y_{1}-2 y_{2}+y_{3}}{3}$, and $x_{3}=\frac{y_{1}+y_{2}-2 y_{3}}{3}$ we see that

$$
\begin{aligned}
f_{y_{1}, y_{2}, y_{3}\left(y_{1}, y_{2}, y_{3}\right)} & =\frac{1}{3} f_{x_{1}, x_{2}, x_{3}}\left(\frac{y_{1}+y_{2}+y_{3}}{3}, \frac{y_{1}-2 y_{2}+y_{3}}{3}, \frac{y_{1}+y_{2}-2 y_{3}}{3}\right) \\
& =\frac{1}{3(2 \pi)^{3 / 2}} e^{-\frac{1}{2} Q\left(y_{1}, y_{2}, y_{3}\right)}, \quad-\infty<y_{1}, y_{2}, y_{3}<\infty,
\end{aligned}
$$

where

$$
\begin{aligned}
Q\left(y_{1}, y_{2}, y_{3}\right) & =\left(\frac{y_{1}+y_{2}+y_{3}}{3}\right)^{2}+\left(\frac{y_{1}-2 y_{2}+y_{3}}{3}\right)^{2}+\left(\frac{y_{1}+y_{2}-2 y_{3}}{3}\right)^{2} \\
& =\frac{1}{3} y_{1}^{2}+\frac{2}{3} y_{2}^{2}+\frac{2}{3} y_{3}^{2}-\frac{2}{3} y_{2} y_{3} .
\end{aligned}
$$

- See Example 7e Page 284.

Problems and Exercises

PROBLEMS

PAGE 290:

$$
2,6,7,8,15,17,19,20,21,27,40,41,44,55,58,59
$$

THEORETICAL EXERCISES

PAGE 294:

$$
5,7,9,28,35
$$

