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Special Topics for Multiple Regression

@ Extra Sums of Squares
o Standardized Version of the Multiple Regression Model

o Multicollinearity
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Extra Sums of Squares

@ A topic unique to multiple regression

@ An extra sum of squares measures the marginal decrease in the error
sum of squares when one or several predictor variables are added to
the regression model, given that other variables are already in the
model.

@ Equivalently, one can view the extra sum of squares as measuring the
marginal increase in the regression sum of squares
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@ Multiple regression
— Output: Body fat percentage
— Input:
1. triceps skin fold thickness(Xj)
2. thigh circumference (X2)
3. midarm circumference (X3)
e Aim
—Replace cumbersome and expensive immersion in water procedure
with model.

o Goal
— Determine which predictor variables provide a good model.
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Triceps / _ Thigh Mfgjanﬁ
Subject Skinfold Thickness Circumference Circu@fefénce Body Fat

i Xit Xiz FXB_ Y;

1 19.5 431 29.1 £ 110

2 -24.7 49.8° 282 22.8

3 30.7 51.9 37.0 18.7
18 30.2 58.6 :24.6 25.4
19 22,7 48.2 274 14.8
20 252 51.0 275 21.1
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(a) Regression of Y-on X;
V'= —1.496 + .8572X

Source of
Variation

Regression
Error

Total

Variable
X4
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5§ df. Ms
352.27 1 352.27
143.12 18 7.95
495.39. 19
Estimated Estimated
Regression Coefficient Standard Deviation t*
by = .8572. s{by} =-1288 6.66
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(b) Regression of ¥ on X,
f'= —23.634 + .8565X;

Source of
Variation
Regression
Error
Total

Variable
X2

s df
381.97 1
113.42 . 18
495.39 19
Estimated Es‘t'imated
Regression-Coefficient Standard Deviation

Ms

381.97
6.30

=
7.79
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Regression of Y on X; and X;

(c) Regression of Y on X; and X,
¥ =—19.174 4 .2224 X, + .6594X,

Source of
Variation ss df MS
Regression 385.44 2 192.72
Error 109.95 17 6.47
Total 495.39 19

Estimated Estimated
Variable Regression Coefficient Standard Deviation t*
X4 by =.2224 s{b1} = .3034.5 73
X2 by = 6594 s{by} =.2912 2.26
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Regression of Y

on X1, X5 and Xjs.

(d) Regression of Y on X;, X2, and X3
¥ =117.08 + 4.334X; — 2.857X; — 2.186 X3

Source of
Variation ss df MS
Regression 396.98 3 132.33
Error 98.41 16 6.15
Total 495.39 19

Estimated Estimated
Variable Regression Coefficient Standard Deviation t*
X4 b= 4.334 s{b;} = 3.016 1.44
X2 b, = —2.857 s{by} = 2.582 1.1
X3 b3 =—-2.186 S{b3} =1.596 -1.37
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@ SSR Xj only denoted by SSR(X;)=352.27
e SSE Xj only denoted by SSE(X;)=143.12
@ Accordingly,

o SSR(Xi, X»)=385.44
o SSE(X1, X>)=109.95
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More Powerful Model, Smaller SSE

@ When Xj and X, are in the model, SSE(X7, X2)=109.95 is smaller
than when the model contains only X

@ The difference is called extra sum of squares and will be denoted by
SSR(X2|X1) = SSE(X1) — SSE(X1, X2) = 33.17

@ The extra sum of squares SSR(X2|X1) measure the marginal effect of
adding X; to the regression model when Xj is already in the model
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SSR increase and SSE decrease

The extra sum of squares SSR(X>|X1) can equivalently be viewed as the
marginal increase in the regression sum of squares.

SSR(X2|X1) = SSR(X1, X2) — SSR(X1)
— 385.44 — 352.27
= 33.17
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Why does this relationship exist?

@ Remember S5TO = SS5R + SSE

@ SSTO measures only the variability of the Y's and does not depend
on the regression model fitted.

@ Any increase in SSR must be accompanied by a corresponding
decrease in the SSE.
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Example relations

SSR(X3|X1, X2) = SSE(X1, X2) — SSE(X1, X2, X3)
= SSR(X1, X2, X3) — SSR(X1, X2)
=11.54

or with multiple variables included at time
SSR(Xa2, X3|X1) = SSE(X1) — SSE(X1, X2, X3)

= SSR(X1, X2, X3) — SSR(X1)
— 4471
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@ Definition
SSR(X1|X2) = SSE(X2) — SSE(X1, X2)
o Equivalently
SSR(X1|X2) = SSR(X1, X2) — SSR(X2)
@ We can switch the order of X7 and X5 in these expressions

@ We can easily generalize these definitions for more than two variables
SSR(X3|X1, X2) = SSE (X1, X2) — SSE(X1, X2, X3)
SSR(X3| X1, X2) = SSR(X1, X2, X3) — SSR(X1, X2)
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N! different partitions

Figure :

$5TO = 495.39 S5TO = 495.39

SSR(X,) = 352.27
SSR(Xp) = 381.97 4 L—-— SSR(X,, X;) = 385.44 —=< )

~— SSR(X,|X)) = 33.17

SSR(Xy|X) = 3.47 —>

SSE(Xy) = 143.12
SSE(Xz) = 113.42 SSE(X,, X;) = 109.95 !
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ANOVA Table

Various software packages can provide extra sums of squares for regression

analysis. These are usually provided in the order in which the input
variables are provided to the system, for instance

Figure :
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Importance

Extra sums of squares are of interest because they occur in a variety of
tests about regression coefficients where the question of concern is
whether certain X variables can be dropped from the regression model.

Yang Feng (Columbia University) Multiple Regression (I1) 18 / 44



Test whether a single 8y =0

@ Does X, provide statistically significant improvement to the
regression model fit?

@ We can use the general linear test approach

@ Example: First order model with three predictor variables
Yi = Bo + B1Xi1 + B2Xi2 + B3 Xi3 + €

We want to answer the following hypothesis test

H02,33:0
Hi:B3#0
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Test whether a single 8y =0

e For the full model we have SSE(F) = SSE (X1, X2, X3)

@ The reduced model is Y; = 8o + 51.Xj1 + 52 X2 + €;

@ And for this model we have SSE(R) = SSE(Xi, X2)

@ Where there are df, = n — 3 degrees of freedom associated with the

reduced model
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Test whether a single 8y =0

The general linear test statistics is

[+ _ SSE(R)=SSE(F /SSE
dfr—dfr dfr

which becomes

F* — SSE(Xl,Xg)—SSE(Xl,X2,X3)/SSE(Xl,X27X3)
- (n—3)—(n—4) n—4

but SSE(Xl,X2) — SSE(Xl,Xg,X3) = 55R(X3|X1,X2)
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Test whether a single 8y =0

The general linear test statistics is

Fr — SSR(X3|X1.Xp) /SSE(Xl,XQ,X3) _ MSR(X3|X1,X)
= 1 n—4 = WMSE(X1,X2,X3)

Extra sum of squares has one associated degree of freedom.
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Body fat: Can X3 (midarm circumference) be dropped from the model?

Figure :

Fr — SSR(X31|X1,X2)/SSE()'giQ,XQ _ 1.88
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Example Cont.

e For aw = .01 we require F(.99;1,16) = 8.53
@ We observe F* =1.88
@ We conclude Hy : 53 =0
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Test whether several gy =0

Another example

Ho: 2= p3=0

Hi : not both 5> and B3 are zero

The general linear test can be used again

Fr _ SSE(X1)—SSE(X1.X:.X3) /SSE(Xl,Xz,X3)
(n—2)—(n—4)

But SSE(X;[) — SSE(Xl, Xz, X3) = SSR(XQ, X3|X1)
so the expression can be simplified.
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Tests concerning regression coefficients

@ General linear test can be used to determine whether or not a
predictor variable( or sets of variables) should be included in the
model

@ The ANOVA SSE's can be used to compute F* test statistics

@ Some more general tests require fitting the model more than once
unlike the examples given.
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Summary of Tests Concerning Regression Coefficients

@ Test whether all 8, =0
@ Test whether a single 8, =0

@ Test whether some B, =0
@ Test involving relationships among coefficients, for example,

°© Ho:B1=p02vs. Hy: p1# B2
e Hy: By =3,8, =5 vs. H,: otherwise

@ Key point in all tests: form the full model and the reduced model,
then calculate the SSE(F) and SSE(R).
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Coefficients of Partial Determination

@ Recall "Coefficient of determination”:
R? measures the proportionate reduction in the variation of Y by
introduction of the entire set of X.

@ Partial Determination:
measures the marginal contribution of one X variable when all others
are already in the model.
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Two predictor variables

Yi = Bo+ BiXin + BaXio + €

o Coefficient of partial determination between Y and Xj given X3 in the
model is denoted as R$,1|2:

SSE(X,) — SSE(X1,X2)  SSR(X1|Xa)
SSE(X2) ~ T SSE(Xy)

2
Ryi2 =

o Likewise:

SSE(X1) — SSE(X1,%) _ SSR(Xa|X1)
SSE(Xq) T SSE(Xy)

2 _
Ry =
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General case

R2. SSR(X1| X2, X3)
Y1237 SSE(Xa, X3)

p2 _ SSR(X:|Xu, Xa, Xs)
Y4123 SSE (X1, X2, X3)
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@ Value between 0 and 1

@ Another way of getting R$,1|2:
© Regress Y on X, and obtain the residuals e;(Y|X2) = Y; — \A/;QXZ)
@ Regress X; on X; and obtain the residuals €;(X1|X2) = Xi1 — Xi1(X2)
© R? between e;(Y|X,) and €;(X1|X2) will be the same as R$/1|2'

@ Followup, the scatter plot of €;(Y|X2) and e;(X1]|X2) provides a
graphical representation of the strength of the relationship between Y
and Xi, adjusted for X5. Called “added variable pots” or “partial
regression plots”. More on Chapter 10.1.
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Coefficients of Partial Correlation

o Coefficients of Partial Correlation:
square root of a coefficient of partial determination, following the
same sign with the regression coefficient.
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Standardized Multiple Regression

@ Numerical precision errors can occur when
- (X’X)~ ! is poorly conditioned near singular : colinearity
- And when the predictor variables have substantially different
magnitudes

@ Solution
— Regularization
— Standardized multiple regression

o First, transformed variables
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Correlation Transformation

@ Makes all entries in X’X matrix for the transformed variables fall
between -1 and 1 inclusive

@ Lack of comparability of regression coefficients
Y = 200 + 20000X; + .2X;
Y in dollars, Xj in thousand dollars, X5 in cents
— Which is most important predictor?
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Correlation Transformation

@ Makes all entries in X’X matrix for the transformed variables fall
between -1 and 1 inclusive

@ Lack of comparability of regression coefficients
Y =200 4 20000X; + .2X,
Y in dollars, Xj in thousand dollars, X5 in cents
— Which is most important predictor?
X1 increase 1,000 dollars— Y increase 20,000 dollars
X5 increase 1,000 dollars— Y also increase 20,000 dollars
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Correlation Transformation

Centering and scaling

Yi—Y
Sy

Xi—X, _
%,k_l,...,p—l

_ ) 2=Y)?

Sy = n—1

so= ERRE 41 oo
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Correlation Transformation

Transformed variables

. 1 Y-V
Vi = (—)
n—1 Sy
1 Xk — Xk
.*: ’k:].’.’ _1
ik /7,7_1( Sk ) p
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Standardized Regression Model

Define the matrix consisting of the transformed X variables

X{1 Xl"‘p_1
* *

X* _ X21 cee X27p_1
* *

nl - n,p—1

And define (X*)'X* = rxx
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Correlation matrix of the X variables

Can show that

1 Mo r17p_1
. 1 1 e Rp—1
rxx =
'p—1,1 Ip—1,2 .- 1

where each entry is just the coefficient of correlation between X; and X;

Zx*x* :Z(Xil_xl)(xi2_x2)
iz vVn—1s1" v/n—1s

1 Y (X1 — X1) (X2 — X2)
n—1 515
_ > (X1 — Xl)(X,'z — )?2)
[Z(Xil - X1)2 Z(XIZ — )?2)2]1/2
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Standardized Regression Model

@ The regression model using the transformed variables:
Vi =B1Xa+ o+ By X1 T €

@ Notice that there is no need for intercept

o If we define in a similar way (X*)'Y* = rxy, where rxy is the
coefficient of simple correlations between X; and Y

@ Then we can set up a standard linear regression problem

rxxb = rxy
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Standardized Regression Model

The solution

by

*
p—1
can be related to the solution to the untransformed regression problem
through the relationship

be= ()b k=1,...p—1
bo= ¥ — byXi — oo — by 1 Koy
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Multicollinearity

When the predictor variables are correlated among themselves,
intercorrelation or multicollinearity among them is said to exist.

@ Uncorrelated Predictor Variables
@ Perfectly Correlated Predictor Variables
o Effects of Multicollinearity
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Uncorrelated Predictor Variables

Suppose we have the following three regression

@ Regress Y on Xj. (Estimator by)

@ Regress Y on Xp. (Estimator by)

® Regress Y on both Xj and X, (Estimator by and b})
If X1 and X5 are uncorrelated, then we have

Q by = b}, by = b}

@ SSR(X1|X2) = SSR(X1), SSR(X2|X1) = SSR(X2)
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Perfectly Correlated Predictor Variables

Regress Y on both X and Xp. If X and X, are perfectly correlated (say
Xo =5+ .5X1), then

@ We have infinitely many possible solutions which fits the model
equally well (have the same SSE).

@ The perfect relation between X; and X5 does not inhibit our ability to
obtain a good fit.

@ The magnitude of the regression coefficients can not be interpreted as
reflecting the effects of different predictor variables.

Yang Feng (Columbia University) Multiple Regression (I1) 43 / 44



General Effects of Multicollinearity

@ Usually, we still have good fit of the data, in addition, we still have
good prediction.

@ The estimated regression coefficients tends to have large sampling
variability when the predictor variables are highly correlated. Some of
the regression coefficients maybe statistically not significant even
though a definite statistical relation exists.

@ The common interpretation of a regression coefficient is NOT fully
applicable any more.

@ Regress Y on both X; and X5. It is possible that when individual
t-tests are performed, neither 3y or s is significant. However, when
the F-test is performed for both 3; and (>, the results may still be
significant.
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