Multiple Regression

Yang Feng

Yang Feng (Columbia University)

æ

イロト イ団ト イヨト イヨト

Multiple regression

- One of the most widely used tools in statistical analysis
- Matrix expressions for multiple regression are the same as for simple linear regression

- ∢ ∃ ▶

Need for Several Predictor Variables

Often the response is best understood as being a function of multiple input quantities

- Examples
 - Spam filtering-regress the probability of an email being a spam message against thousands of input variables
 - Revenue prediction regress the revenue of a company against a lot of factors

First-Order with Two Predictor Variables

• When there are two predictor variables X₁ and X₂ the regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$$

is called a first-order model with two predictor variables.

- A first order model is linear in the predictor variables.
- X_{i1} and X_{i2} are the values of the two predictor variables in the *i*th trial.

Functional Form of Regression Surface

• Assuming noise equal to zero in expectation

$$\mathbb{E}(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

The form of this regression function is of a plane
e.g. 𝔼(𝒴) = 10 + 2𝑥₁ + 5𝑥₂

ヨト イヨト

Example

3

イロト イヨト イヨト イヨト

Meaning of Regression Coefficients

- β_0 is the intercept when both X_1 and X_2 are zero;
- β₁ indicates the change in the mean response E(Y) per unit increase in X₁ when X₂ is held constant
- β₂ -vice versa
- Example: fix $X_2 = 2$

$$\mathbb{E}(Y) = 10 + 2X_1 + 5(2) = 20 + 2X_1$$
 $X_2 = 2$

intercept changes but clearly linear

• In other words, all one dimensional restrictions of the regression surface are lines.

Terminology

- When the effect of X₁ on the mean response does not depend on the level X₂ (and vice versa) the two predictor variables are said to have additive effects or not to interact.
- The parameters \(\beta_1\) and \(\beta_2\) are sometimes called *partial regression coefficients*. They represents the partial effect of one predictor variable when the other predictor variable is included in the model and is held constant.

Comments

- A planar response surface may not always be appropriate, but even when not it is often a good approximate descriptor of the regression function in "local" regions of the input space
- The meaning of the parameters can be determined by taking partials of the regression function w.r.t. to each.

First order model with > 2 predictor variables

Let there be p-1 predictor variables, then

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{p-1}X_{i,p-1} + \epsilon_{i}$$

which can also be written as

$$Y_i = \beta_0 + \sum_{k=1}^{p-1} \beta_k X_{ik} + \epsilon_i$$

and if $X_{i0} = 1$ is also can be written as

$$Y_i = \sum_{k=0}^{p-1} \beta_k X_{ik} + \epsilon_i$$

where $X_{i0} = 1$

Geometry of response surface

- In this setting the response surface is a hyperplane
- This is difficult to visualize but the same intuitions hold
 - Fixing all but one input variables, each β_p tells how much the response variable will grow or decrease according to that one input variable

We have arrived at the general regression model. In general the $X_1, ..., X_{p-1}$ variables in the regression model do not have to represent different predictor variables, nor do they have to all be quantitative(continuous).

The general model is

$$Y_i = \sum_{k=0}^{p-1} \beta_k X_{ik} + \epsilon_i$$
 where $X_{i0} = 1$

with response function when $\mathbb{E}(\epsilon_i)=0$ is

$$\mathbb{E}(Y) = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1}$$

Qualitative(Discrete) Predictor Variables

Until now we have (implicitly) focused on quantitative (continuous) predictor variables.

Qualitative(discrete) predictor variables often arise in the real world.

Examples:

- Patient sex: male/female
- College Degree: yes/no
- Etc

▶ ∢ ∃ ▶

Example

Regression model to predict the length of hospital stay(Y) based on the age (X_1) and gender (X_2) of the patient. Define gender as:

 $X_2 = \left\{ egin{array}{cc} 1 & {
m if patient female} \\ 0 & {
m if patient male} \end{array}
ight.$

And use the standard first-order regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$$

Example cont.

- Where X_{i1} is patient's age, and X_{i2} is patient's gender
- If $X_2 = 0$, the response function is $E(Y) = \beta_0 + \beta_1 X_1$
- Otherwise, it's $E(Y) = (\beta_0 + \beta_2) + \beta_1 X_1$
- Which is just another parallel linear response function with a different intercept

Polynomial Regression

- Polynomial regression models are special cases of the general regression model.
- They can contain squared and higher-order terms of the predictor variables
- The response function becomes curvilinear.
- For example $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$ which clearly has the same form as the general regression model.

General Regression

- Transformed variables $\log Y, 1/Y$
- Interaction effects

 $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \epsilon_i$

- Combinations $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i1}^2 + \beta_3 X_{i2} + \beta_4 X_{i1} X_{i2} + \epsilon_i$
- Key point-all linear in parameters!

General Regression Model in Matrix Terms

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ \cdot \\ \cdot \\ Y_n \end{pmatrix}_{n \times 1} \qquad \mathbf{X} = \begin{pmatrix} 1 & X_{11} & X_{12} & \dots & X_{1,p-1} \\ \dots & & & \\ 1 & X_{n1} & X_{n2} & \dots & X_{n,p-1} \end{pmatrix}_{n \times p}$$
$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \cdot \\ \cdot \\ \cdot \\ \beta_{p-1} \end{pmatrix}_{p \times 1} \qquad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \cdot \\ \cdot \\ \epsilon_n \end{pmatrix}_{n \times 1}$$

æ

イロト イヨト イヨト イヨト

$$\mathbf{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

With $E(\epsilon) = 0$ and

$$\sigma^{2}\{\boldsymbol{\epsilon}\} = \begin{pmatrix} \sigma^{2} & 0 & \dots & 0\\ 0 & \sigma^{2} & \dots & 0\\ \dots & & & \\ 0 & 0 & \dots & \sigma^{2} \end{pmatrix}$$

We have $E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$ and $\sigma^{2}\{\mathbf{Y}\} = \sigma^{2}\{\boldsymbol{\epsilon}\} = \sigma^{2}\mathbf{I}$

æ

Least Square Solution

The matrix normal equations can be derived directly from the minimization of

$$Q(\mathbf{b}) = (\mathbf{Y} - \mathbf{X}\mathbf{b})'(\mathbf{Y} - \mathbf{X}\mathbf{b})$$

w.r.t. to **b**

Key result

$$\frac{\partial \mathbf{X} \mathbf{b}}{\partial \mathbf{b}} = \mathbf{X}.$$
 (1)

э

∃ ▶ ∢ ∃ ▶

We can solve this equation

$$\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{X}'\mathbf{Y}$$

(if the inverse of $\mathbf{X}'\mathbf{X}$ exists) by the following

 $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$

and since

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X} = \mathbf{I}$$

we have

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

- ∢ ∃ ▶

Fitted Values and Residuals

Let the vector of the fitted values are

$$\mathbf{\hat{Y}} = \begin{pmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \cdot \\ \cdot \\ \cdot \\ \hat{Y}_n \end{pmatrix}$$

in matrix notation we then have $\hat{\boldsymbol{Y}}=\boldsymbol{X}\boldsymbol{b}$

3

∃ ⇒

Hat Matrix-Puts hat on y

We can also directly express the fitted values in terms of X and Y matrices

$$\hat{\mathbf{Y}} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Y}$$

and we can further define \mathbf{H} , the "hat matrix"

$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$$
 $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$

The hat matrix plans an important role in diagnostics for regression analysis.

Hat Matrix Properties

- 1. the hat matrix is symmetric
- 2. the hat matrix is idempotent, i.e. $\mathbf{H}\mathbf{H} = \mathbf{H}$

Important idempotent matrix property

For a symmetric and idempotent matrix \mathbf{A} , $rank(\mathbf{A}) = trace(\mathbf{A})$, the number of non-zero eigenvalues of \mathbf{A} .

Residuals

The residuals, like the fitted value $\hat{\mathbf{Y}}$ can be expressed as linear combinations of the response variable observations Y_i

$$\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{H}\mathbf{Y} = (\mathbf{I} - \mathbf{H})\mathbf{Y}$$

also, remember

$$\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\mathbf{b}$$

these are equivalent.

Covariance of Residuals

Starting with

$$\mathbf{e} = (\mathbf{I} - \mathbf{H})\mathbf{Y}$$

we see that

$$\sigma^{2}\{\mathbf{e}\} = (\mathbf{I} - \mathbf{H})\sigma^{2}\{\mathbf{Y}\}(\mathbf{I} - \mathbf{H})'$$

but

$$\sigma^2\{\mathbf{Y}\} = \sigma^2\{\boldsymbol{\epsilon}\} = \sigma^2\mathbf{I}$$

which means that

$$\sigma^{2} \{ \mathbf{e} \} = \sigma^{2} (\mathbf{I} - \mathbf{H}) \mathbf{I} (\mathbf{I} - \mathbf{H}) = \sigma^{2} (\mathbf{I} - \mathbf{H}) (\mathbf{I} - \mathbf{H})$$

and since I - H is idempotent (check) we have $\sigma^2 \{ e \} = \sigma^2 (I - H)$

3

• • = • • = •

Quadratic Forms

• In general, a quadratic form is defined by

$$\mathbf{Y}'\mathbf{A}\mathbf{Y} = \sum_i \sum_j a_{ij} Y_i Y_j$$
 where $a_{ij} = a_{ji}$

with **A** the matrix of the quadratic form.

 The ANOVA sums SSTO,SSE and SSR can all be arranged into quadratic forms.

$$SSTO = \mathbf{Y}'(\mathbf{I} - \frac{1}{n}\mathbf{J})\mathbf{Y}$$
$$SSE = \mathbf{Y}'(\mathbf{I} - \mathbf{H})\mathbf{Y}$$
$$SSR = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J})\mathbf{Y}$$

Cochran's Theorem

Let X_1, X_2, \ldots, X_n be independent, $N(0, \sigma^2)$ -distributed random variables, and suppose that

$$\sum_{i=1}^{n} X_i^2 = Q_1 + Q_2 + \ldots + Q_k,$$

where Q_1, Q_2, \ldots, Q_k are nonnegative-definite quadratic forms in the random variables X_1, X_2, \ldots, X_n , with $rank(\mathbf{A}_i) = r_i, i = 1, 2, \ldots, k$. namely,

$$Q_i = \mathbf{X}' \mathbf{A}_i \mathbf{X}, \ i = 1, 2, \dots, k.$$

If $r_1 + r_2 + \ldots + r_k = n$, then **1** Q_1, Q_2, \ldots, Q_k are independent; and **2** $Q_i \sim \sigma^2 \chi^2(r_i), i = 1, 2, \ldots, k$

ANOVA table for multiple linear regression

Source of Variation	SS	df	MS	$\mathbb{E}(MS)$
Regression	SSR	p - 1	MSR = SSR/(p-1)	$> \sigma^2$
Error	SSE	n – p	MSE = SSE/(n-p)	σ^2
Total	$SSTO = \sum (Y_i - \bar{Y})^2$	n-1		

2

.

F-test for regression

•
$$H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$$

• H_a : no all $eta_k, (k=1,\cdots,p-1)$ equal zero

Test statistic:

$$F^* = \frac{MSR}{MSE}$$

Decision Rule:

• if
$$F^* \leq F(1-\alpha; p-1, n-p)$$
, conclude H_0

• if
$$F^* > F(1 - \alpha; p - 1, n - p)$$
, conclude H_a

æ

イロト イ理ト イヨト イヨトー

R^2 and adjusted R^2

• The coefficient of multiple determination R² is defined as:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

•
$$0 \leq R^2 \leq 1$$

- R^2 always increases when there are more variables.
- Therefore, adjusted R^2 :

$$R_a^2 = 1 - \frac{\frac{SSE}{n-p}}{\frac{SSTO}{n-1}} = 1 - \left(\frac{n-1}{n-p}\right)\frac{SSE}{SSTO}$$

- R_a^2 may decrease when p is large.
- Coefficient of multiple correlation:

$$R = \sqrt{R^2}$$

Always positive square root!

Inferences about parameters

We have

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Since $\sigma^2 \{ \mathbf{Y} \} = \sigma^2 \mathbf{I}$ we can write

$$\sigma^{2} \{ \mathbf{b} \} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$
$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$
$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{I}$$
$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}$$

Also

$$\mathbb{E}(\mathbf{b}) = \mathbb{E}((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\,\mathbb{E}(\mathbf{Y}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta}$$

æ

イロト イ理ト イヨト イヨト

The estimated variance-covariance matrix

$$s^{2}{\mathbf{b}} = MSE(\mathbf{X}'\mathbf{X})^{-1}$$

Then, we have

$$\frac{b_k-\beta_k}{s\{b_k\}}\sim t(n-p), k=0,1,\cdots,p-1$$

• $1 - \alpha$ confidence intervals:

$$b_k \pm t(1-\alpha/2; n-p)s\{b_k\}$$

æ

₹ Ξ > < Ξ >

Image: Image:

- Tests for β_k :
 - $H_0: \beta_k = 0$ • $H_1: \beta_k \neq 0$
- Test Statistic:

$$t^* = \frac{b_k}{s\{b_k\}}$$

- Decision Rule:
 - $|t^*| \le t(1 \alpha/2; n p);$ conclude H_0
 - Otherwise, conclude H_a

æ

イロト イ理ト イヨト イヨト

Bonferroni Joint Confidence Intervals for g parameters, the confidence limits with family confidence coefficient $1-\alpha$ are

 $b_k \pm Bs\{b_k\},\$

where

$$B = t(1 - \alpha/(2g); n - p)$$

3

• • = • • = •

- We want to estimate the response at $\mathbf{X}_h = (1, X_{h1}, \cdots, X_{h,p-1})'$.
- Estimator: $\hat{Y}_h = \mathbf{X}'_h \mathbf{b}$
- Expectation $E\hat{Y}_h = \mathbf{X}'_h \boldsymbol{\beta} = EY_h$
- Variance $\sigma^2 \{ \hat{Y}_h \} = \sigma^2 \mathbf{X}_h' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}_h$
- Estimated Variance $s^2{\hat{Y}_h} = MSE(\mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h)$
- 1α confidence limits for EY_h :

$$\hat{Y}_h \pm t(1 - \alpha/2; n - p)s\{\hat{Y}_h\}$$

Confidence Region for Regression Surface and Prediction of New Observations

• Working-Hotelling confidence band:

$$\hat{Y}_h \pm Ws\{\hat{Y}_h\}$$

where $W^2 = pF(1 - \alpha; p, n - p)$

• Prediction of New Observation $Y_{h(new)}$:

$$\hat{Y}_{h} \pm t(1 - \alpha/2; n - p)s\{pred\}$$

where $s^2\{pred\} = MSE + s^2\{\hat{Y}_h^2\} = MSE(1 + \mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h).$

- Very similar to simple linear regression.
- Only mention the difference.

-∢∃>

Scatter Plot Matrix

• It is a matrix of scatter plot! R code: pairs(data)

Yang Feng (Columbia University)

Correlation Matrix

- Corresponds to the scatter plot matrix
- R code: cor(data)

	Population	Income	Sales
Population	1.00	0.78	0.94
Income	0.78	1.00	0.84
Sales	0.94	0.84	1.00

э

∃ ► < ∃ ►</p>

Other Diagnostics and Remedial Measures (Read after class)

- Residual Plots.
 - Against time (or some other sequence) for error dependency.
 - Against each X variable for potential nonlinear relationship and nonconstancy of error variances.
 - Against omitted variables (including the interaction terms). More on interaction terms in next Chapter.
- Correlation Test for Normality (Same, since it is on the residuals)
- Brown-Forsythe Test for Constancy of Error Variance (Need to find a way to divide the **X** space)
- Breusch-Pagan Test for Constancy of Error Variance (Same)
- F Test for Lack of Fit (Need to have (near) replicates on all dimension of **X**)
- Box-Cox Transformations (Same, since it is on Y)

글 > - + 글 >