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Definition of Matrix

@ Rectangular array of elements arranged in rows and columns

16000 23
33000 47
21000 35

@ A matrix has dimensions
@ The dimension of a matrix is its number of rows and columns

@ It is expressed as 3 x 2 (in this case)
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Indexing a Matrix

@ Rectangular array of elements arranged in rows and columns

a a a
A— |91 912 a13
21 @22 a3

@ A matrix can also be notated

A=l[a],i=1,2j=123
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Square Matrix and Column Vector

@ A square matrix has equal number of rows and columns

a a a
4 7 all a12 a13
3 0 21 22 23

a31 432 ass

@ A column vector is a matrix with a single column

1
4 ()
7 c3
10 Cy
C5

@ All vectors (row or column) are matrices, all scalars are 1 x 1 matrices.
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Transpose

@ The transpose of a matrix is another matrix in which the rows and
columns have been interchanged

2 5
A= |7 10

3 4
, 2 7 3
A_[5104]
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Equality of Matrices

@ Two matrices are the same if they have the same dimension and all
the elements are equal

ail 4
as 3

A:Bimplies 31:4,32:7,33:3
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Matrix Addition and Substraction

Then
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Multiplication of a Matrix by a Scalar

2 7
S
2 7 [k 7k
kAk[g 3][9k 3k]
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Multiplication of two Matrices

12 s _fa 6
2132_[4 IJ 2]32_[5 8]

A B AB
Row 1 4 E Row1 {33 52
Row2 | 4 5
Col. 1 Col. 2 Col. 1 Col. 2
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Another Matrix Multiplication Example
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Special Matrices

o If A=A/, then A is a symmetric matrix

A =

oA

4 6 1
2 5 A= |4
5 3 6

aN b

6
5
3

o If the off-diagonal elements of a matrix are all zeros it is then called a
diagonal matrix

a0 0 51 0 o
Azg";f B=10 0 10 0
3 00 0 5
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Identity Matrix

A diagonal matrix whose diagonal entries are all ones is an identity matrix.

Multiplication by an identity matrix leaves the pre or post multiplied
matrix unchanged.

1 000
|- 0100
0010
0 001
and
Al=1A=A

Yang Feng (Columbia University) Linear Algebra Review 12 / 46



Vector and matrix with all elements equal to one

1 1 1
1: J:
. 1 1
-
. 1 1
W=\ [t1...1=] . .|=J
H 1 1
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Linear Dependence and Rank of Matrix

Consider
1 2 5 1
A=12 2 10 6
3 4 15 1

and think of this as a matrix of a collection of column vectors.

Note that the third column vector is a multiple of the first column vector.
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Linear Dependence

When m scalars ki, ..., km not all zero, can be found such that:
kA1 + ...+ knAn=0

where 0 denotes the zero column vector and A; is the it" column of matrix
A, the m column vectors are called linearly dependent. If the only set of
scalars for which the equality holds is ky =0, ..., k;; = 0, the set of m
column vectors is linearly independent.

In the previous example matrix the columns are linearly dependent.

1 2 5 1 0
512 +0 (2 —1]10| +0 |6 = |0
3 4 15 1 0
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Rank of Matrix

The rank of a matrix is defined to be the maximum number of linearly
independent columns in the matrix. Rank properties include

The rank of a matrix is unique

The rank of a matrix can equivalently be defined as the maximum
number of linearly independent rows

The rank of an r x ¢ matrix cannot exceed min(r, c)
The row and column rank of a matrix are equal

The rank of a matrix is preserved under nonsingular transformations.,
i.e. Let A (nx n) and C (k x k) be nonsingular matrices. Then for
any n x k matrix B we have

rank(B) = rank(AB) = rank(BC)
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Inverse of Matrix

@ Like a reciprocal

@ But for matrices

Yang Feng (Columbia University)

6%x1/6=1/6%x6=1
1

x— =1
X

AAl = A-1a =
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More generally,

where D = ad — bc
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Inverses of Diagonal Matrices are Easy

300
A=10 4 0
00 2
then
1/3 0 0
Al=10 1/4 0
0 0 1/2
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Finding the inverse

e Finding an inverse takes (for general matrices with no special
structure)

O(n®)
operations (when n is the number of rows in the matrix)

@ We will assume that numerical packages can do this for us
in R: solve(A) gives the inverse of matrix A
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Uses of Inverse Matrix

@ Ordinary algebra 5y = 20
is solved by 1/5 % (5y) = 1/5 * (20)
@ Linear algebra AY =C
is solved by
A“lAY = A lC,Y=A"IC
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Solving a system of simultaneous equations

2y1 + 4y, =20
3y1 +y2 =10

k-
b]=F 1 B
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List of Useful Matrix Properties

A+B = B+A
(A+B)+C = A+ (B+C)

(AB)C = A(BC)
C(A+B) = CA+CB
k(A+B) = kA+kB

(A'Y = A

(A+B) = A'+PB

(AB) = B'A

(ABC) = C'B'A’

(AB)! = B!A!
(ABC)™! = ciB!A!

(Afl)fl — Ay(A/)flz(Afl)/
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Random Vectors and Matrices

Let's say we have a vector consisting of three random variables

Y1
Y=1|Y>
Y3

The expectation of a random vector is defined as

E(Y1)
E(Y) = | E(Y2)
E(Y3)

Yang Feng (Columbia University) Linear Algebra Review 24 / 46



Expectation of a Random Matrix

The expectation of a random matrix is defined similarly

E(Y)=[E(Y;)] i=1,..mj=1,..p
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Variance-covariance Matrix of a Random Vector

The variances of three random variables o%(Y;) and the covariances
between any two of the three random variables o( Y}, Y;), are assembled in
the variance-covariance matrix of Y

0’2(Y1) J(Yl, Yz) O’(Yl, Y3)
cov(Y)=c{Y} = | (Y2, Y1) 2(Y2) o(Ya,Y3)
O’(Y3, Yl) J(Y3, Yg) 02(Y3)

remember o( Y2, Y1) = (Y1, Y2) so the covariance matrix is symmetric
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Derivation of Covariance Matrix

In vector terms the variance-covariance matrix is defined by

o {Y} =E(Y —E(Y))(Y - E(Y))'

because
Y1 —E1)
02{Y} =E([| Y2 — E(Y2) (Y1 —E(Y1) Ya—E(Y2) Ys5-— IE(Y3)))
Y3 — E(Y3)
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Regression Example

o Take a regression example with n = 3 with constant error terms
02(e;) and are uncorrelated so that 02(ej,€;) = 0 for all i # j

@ The variance-covariance matrix for the random vector € is

o2 0 0
o?e)=10 o2 0
0 0 o2

which can be written as 02{¢} = o2 |
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Basic Results

If A is a constant matrix and Y is a random matrix then W = AY
is a random matrix

E(A) = A

E(W) = E(AY) = AE(Y)
o?{W} = 0?{AY} = Ac?{Y}A/
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Multivariate Normal Density

@ Let Y be a vector of p observations

D
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Multivariate Normal Density

let X be the variance-covariance matrix of Y

2
o1 012 ... O1p
2
021 03 O2p
p—
o o o2
pl p2 .- b

Then the multivariate normal density is given by

1 1 P
P(Y|p, X) = W@(P[—E(Y —p'xE 1(Y —p)
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Matrix Simple Linear Regression

@ Nothing new-only matrix formalism for previous results
@ Remember the normal error regression model
Yi= 6o+ 61Xi +¢€;, €~ N(0,0‘2), i=1,..,n
@ Expanded out this looks like
Yi= 0o+ b5iXi+ e
Y2 = Bo+ BiXa+ e
Yn = /80 + /8an + €n
@ which points towards an obvious matrix formulation.
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Regression Matrices

o If we identify the following matrices

Yl 1 Xl €1
Y2 1 X2 €2
/30>
Y = X = = =
p (51 €
Y, 1 X, €n

@ We can write the linear regression equations in a compact form

Y=XB8+¢€
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Regression Matrices

@ Of course, in the normal regression model the expected value of each
of the €'s is zero, we can write E(Y) = X3

@ This is because

E(e)=0
E(e1) 0
E(e2) 0
E(en) 0
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Error Covariance

Because the error terms are independent and have constant variance o2

a2 0 0

2
0'2{6} _ 0 g 0
0 O o?
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Matrix Normal Regression Model

In matrix terms the normal regression model can be written as
Y=X3+¢€

where € ~ N(0, o21)
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Least Square Estimation

If we remember both the starting normal equations that we derived

nbo—i—blZXi:ZYi
boZX,'—i-bl ZX,-2 = ZXIYI

and the fact that

Yang Feng (Columbia University) Linear Algebra Review



Least Square Estimation

Then we can see that these equations are equivalent to the following
matrix operations

X'Xb=XY

with

with the solution to this equation given by
b= (X'X)"1X'Y

when (X'X)~! exists.
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Fitted Value

Y =Xb
Because:
i 1 X bo + b1 X1
Y, 1 X by + b1 X2
o B bo
e @)
Vn 1 Xn bO + blxn

39 / 46
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Fitted Values, Hat Matrix

plug in
b= (X'X)"1X'Y
We have
Y = Xb = X(X'X)"IX'Y
or
Y = HY
where

H = X(X'X)"1x’

is called the hat matrix.
Property of hat matrix H:

© symmetric
@ idempotent: HH = H.
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e=Y—-Y=Y—HY=(I-HY
Then
e=(1-H)Y

The matrix I — H is also symmetric and idempotent.
The variance-covariance matrix of e is

o?{e} = o%(1 — H)
And we can estimate it by

s’{e} = MSE(l — H)
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Analysis of Variance Results

2 (V)
SSTO=> (V- Yy’ =>_V .
We know
YY=>"VY?

and J is the matrix with entries all equal to 1. Then we have

)2
n n

As a result:
! 1 !
S5TO=YY - -YJY
n
Yang Feng (Columbia University)
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Analysis of Variance Results

Also,

SSE=3"e? =S (Vi Vi)

can be represented as

SSE=¢ee=Y'(I-H)Y(I-H)Y =Y'(I- H)Y

Notice that H1 =1, then (I - H)J =0
Finally by similarly reasoning,

SSR = ([H - %J]Y)’([H - %J]Y) —Y[H- %J]Y

Easy to check that
SSTO = SSE + SSR
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Sums of Squares as Quadratic Forms

When n = 2, an example of quadratic forms:
5Y7 +6Y1Ys +4Y3

can be expressed as matrix term as

(Y1 Ya) (2 2) G;) = Y'AY

In general, a quadratic term is defined as :

Y’AY:i:zn:A,-jY,-Yj

i=1 j=1
where A,J = Aj,'
Here, A is a symmetric n X n matrix , the matrix of the quadratic form.
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Quadratic forms for ANOVA

SSTO =Y'[I — %J]Y
SSE = Y'[I — H]Y

SSR=Y'[H — %J]Y
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Inference in Regression Analysis

@ Regression Coefficients: The variance-covariance matrix of b is
o?{b} = *(X'X)"!

@ Mean Response: To estimate the mean response at Xj, define

X, = (;h) Then

And the variance-covariance matrix of Y} is

Y, = X}b

o2 { Y} = X4a?{b}X), = 02X}, (X'X) 71X,
@ Prediction of New Observation:

s*{pred} = MSE(1 + X},(X'X)"!X,)
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