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Simultaneous Inferences

In chapter 2, we know how to construct confidence interval for β0 and
β1.

If we want a confidence level of 95% of both β0 and β1

One could construct a separate confidence interval for β0 and β1.
BUT, then the probability of both happening is below 95%.

How to create a joint confidence interval?
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Bonferroni Joint Confidence Intervals

Calculation of Bonferroni joint confidence intervals is a general
technique

We highlight its application in the regression setting

Joint confidence intervals for β0 and β1

Intuition

Set each statement confidence level to larger than 1− α so that the
family coefficient is at least 1− α
BUT how much larger?
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Ordinary Confidence Intervals

Start with ordinary confidence intervals for β0 and β1

b0 ± t(1− α/2; n − 2)s{b0}
b1 ± t(1− α/2; n − 2)s{b1}

And ask what is probability that one or both of these intervals is
incorrect

Remember

s2{b0} = MSE

[
1

n
+

X̄ 2∑
(Xi − X̄ )2

]
s2{b1} =

MSE∑
(Xi − X̄ )2
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General Procedure

Let A1 denote the event that the first confidence interval does not
cover β0, i.e. P(A1) = α

Let A2 denote the event that the second confidence interval does not
cover β1, i.e. P(A2) = α

We want to know the probability that both estimates fall in their
respective confidence intervals, i.e. P(Ā1 ∩ Ā2)

How do we get there from what we know?
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Venn Diagram
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Bonferroni inequality

We can see that P(Ā1 ∩ Ā2) = 1− P(A2)− P(A1) + P(A1 ∩ A2)

Size of set is equal to area is equal to probability in a Venn diagram.

It also is clear that P(A1 ∩ A2) ≥ 0

So,

P(Ā1 ∩ Ā2) ≥ 1− P(A2)− P(A1)

= 1− 2α
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Using the Bonferroni inequality cont.

To achieve a 1− α family confidence interval for β0 and β1 (for
example) using the Bonferroni procedure we know that both
individual intervals must shrink.

Returning to our confidence intervals for β0 and β1 from before

b0 ± t(1− α/2; n − 2)s{b0}
b1 ± t(1− α/2; n − 2)s{b1}

To achieve a 1− α family confidence interval these intervals must
widen to

b0 ± t(1− α/4; n − 2)s{b0}
b1 ± t(1− α/4; n − 2)s{b1}

Then P(Ā1 ∩ Ā2) ≥ 1− P(A2)− P(A1) = 1− α/2− α/2 = 1− α
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Using the Bonferroni inequality cont.

The Bonferroni procedure is very general. To make joint confidence
statements about multiple simultaneous predictions remember that

Ŷh ± t(1− α/2; n − 2)s{pred}

s2{pred} = MSE

[
1 +

1

n
+

(Xh − X̄ )2∑
i (Xi − X̄ )2

]
If one is interested in a 1− α confidence statement about g
predictions then Bonferroni says that the confidence interval for each
individual prediction must get wider (for each h in the g predictions)

Ŷh ± t(1− α/2g ; n − 2)s{pred}

Note: if a sufficiently large number of simultaneous predictions are made,
the width of the individual confidence intervals may become so wide that
they are no longer useful.
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The Toluca Example

Say, we want to get a 90 percent confidence interval for β0 and β1
simultaneously.

Then we require B = t(1− .1/4; 23) = t(.975, 23) = 2.069

Then we have the joint confidence interval:

b0 ± B ∗ s(b0)

and
b1 ± B ∗ s(b1)
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Confidence Band for Regression Line

Remember in Chapter 2.5, we get the confidence interval for E{Yh}
to be

Ŷh ± t(1− α/2; n − 2)s{Ŷh}

Now, we want to get a confidence band for the entire regression line
E{Y } = β0 + β1X .

The Working-Hotelling 1− α confidence band is

Ŷh ±W × s{Ŷh}

here W 2 = 2F (1− α; 2, n − 2).

Same form as before, except the t multiple is replaced with the W
multiple.
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Example: toluca company

Say we want to estimate the boundary value for the band at
Xh = 30, 65, 100.

We have

Looking up the table,
W 2 = 2F (1− α; 2, n − 2) = 2F (.9; 2, 23) = 5.098.
R code:

w2 = 2 * qf(1-0.1,2,23)
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Now we have the confidence band for the three points are
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Example confidence band
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Compare with Bonferroni Procedure

Say we want to simultaneously estimate response for Xh = 30, 65, 100.

Then the simultaneous confidence intervals are

Ŷh ± t(1− α/(2g); n − 2)s{Ŷh}

We have B = t(1− α/(2g); n − 2) = t(1− .1/(2 ∗ 3), 23) = 2.263,
the confidence intervals are
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Bonferroni v.s. Working-Hotelling

This instance, working-hotelling confidence limits are slighter
tighter(better) than bonferroni limits

However, in larger families (more X ) to be considered simultaneously,
working-hotelling is always tighter, since W stays the same for any
number of statements but B becomres larger.

The levels of predictor variables are sometimes not known in advance.
In such cases, it is better to use Working-Hotelling procedure since
the family encompasses all possible levels of X .
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Simultaneous Prediction Intervals for g New Observations

1 Scheffe procedure

Ŷh ± Ss{pred}, (1)

where S2 = gF (1− α; g , n − 2).

2 Bonferroni procedure

Ŷh ± Bs{pred}, (2)

where B = t(1− α/(2g); n − 2).
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Regression through the origin

Model
Yi = β1Xi + εi

Sometimes it is known that the regression function is linear and that
it must go through the origin.

β1 is parameter

Xi are known constants

εi are i.i.d N(0, σ2).

The least squares and maximum likelihood estimators for β1 coincide
as before, the estimator is b1 =

∑
XiYi∑
X 2
i
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Regression through the origin, Cont

In regression through the origin there is only one free parameter (β1)
so the number of degrees of freedom of the MSE

s2 = MSE =

∑
e2i

n − 1
=

∑
(Yi − Ŷi )

2

n − 1

is increased by one.
This is because this is a “reduced” model in the general linear test
sense and because the number of parameters estimated from the data
is less by one.
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A few notes on regression through the origin

∑
ei 6= 0 in general now. Only constraint is

∑
Xiei = 0.

SSE may exceed the total sum of squares SSTO. In the case of a
curvilinear pattern or linear pattern with a intercept away from the
origin.

Therefore, R2 = 1− SSE/SSTO may be negative!

Generally, it is safer to use the original model opposed with
regression-through-the-origin model.

Otherwise, it is the wrong model to start with!
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