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Inference in the Normal Error Regression Model

Yi = β0 + β1Xi + εi

Yi value of the response variable in the i th trial

β0 and β1 are parameters

Xi is a known constant, the value of the predictor variable in the i th

trial

εi ∼iid N(0, σ2)

i = 1, . . . , n
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Maximum Likelihood Estimator(s)

β0

b0 same as in least squares case

β1

b1 same as in least squares case

σ2

σ̂2 =

∑
i (Yi − Ŷi )

2

n

Note that ML estimator is biased as s2 is unbiased and

s2 = MSE =
n

n − 2
σ̂2
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Inference concerning β1

Tests concerning β1 (the slope) are often of interest, particularly

H0 : β1 = 0

Ha : β1 6= 0

the null hypothesis model

Yi = β0 + (0)Xi + εi

implies that there is no linear relationship between Y and X.

Note the means of all the Yi ’s are equal at all levels of Xi .

Yang Feng (Columbia University) Inference in Regression Analysis 4 / 113



Sampling Dist. Of b1

The point estimator for b1 is

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

The sampling distribution for b1 is the distribution of b1 that arises
from the variability of b1 when the predictor variables Xi are held
fixed and the observed outputs are repeatedly sampled

Note that the sampling distribution of b1 will depend on our model
assumptions.
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Sampling Dist. Of b1 In Normal Regr. Model

For a normal error regression model the sampling distribution of b1 is
normal, with mean and variance given by

E(b1) = β1

Var(b1) =
σ2∑

(Xi − X̄ )2

To show this we need to go through a number of algebraic steps.
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First step

To show ∑
(Xi − X̄ )(Yi − Ȳ ) =

∑
(Xi − X̄ )Yi

we observe∑
(Xi − X̄ )(Yi − Ȳ ) =

∑
(Xi − X̄ )Yi −

∑
(Xi − X̄ )Ȳ

=
∑

(Xi − X̄ )Yi − Ȳ
∑

(Xi − X̄ )

=
∑

(Xi − X̄ )Yi
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b1 as convex combination of Yi ’s

b1 can be expressed as a linear combination of the Y ′i s

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

=

∑
(Xi − X̄ )Yi∑
(Xi − X̄ )2

from previous slide

=
∑

kiYi

where

ki =
(Xi − X̄ )∑
(Xi − X̄ )2
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Properties of the k ′i s

It can be shown that ∑
ki = 0∑

kiXi = 1∑
k2
i =

1∑
(Xi − X̄ )2

We will use these properties to prove various properties of the sampling
distributions of b1 and b0.
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Linear combination of independent normal random
variables

When Y1, . . . ,Yn are independent normal random variables, the linear
combination ∑

aiYi ∼ N
(∑

ai E(Yi ),
∑

a2
i Var(Yi )

)
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Normality of b′1s Sampling Distribution

Since b1 is a linear combination of the Y ′i s and each Yi is an independent
normal random variable, then b1 is distributed normally as well

b1 =
∑

kiYi , ki =
(Xi − X̄ )∑
(Xi − X̄ )2

From previous slide

E(b1) =
∑

ki E(Yi ), Var(b1) =
∑

k2
i Var(Yi )
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b1 is an unbiased estimator

This can be seen using two of the properties

E(b1) = E(
∑

kiYi )

=
∑

ki E(Yi )

=
∑

ki (β0 + β1Xi )

= β0

∑
ki + β1

∑
kiXi

= β0(0) + β1(1)

= β1

Yang Feng (Columbia University) Inference in Regression Analysis 12 / 113



Variance of b1

Since the Yi are independent random variables with variance σ2 and the
k ′i s are constants we get

Var(b1) = Var(
∑

kiYi )

=
∑

k2
i Var(Yi )

=
∑

k2
i σ

2

= σ2
∑

k2
i

= σ2 1∑
(Xi − X̄ )2

However, in most cases, σ2 is unknown.
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Estimated variance of b1

When we don’t know σ2 then we have to replace it with the MSE
estimate (From the Least Square estimation)

Let

s2 = MSE =
SSE

n − 2

where
SSE =

∑
e2
i

and
ei = Yi − Ŷi

plugging in we get

V̂ar(b1) =
s2∑

(Xi − X̄ )2
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Recap

We now have an expression for the sampling distribution of b1 when
σ2 is known

b1 ∼ N (β1,
σ2∑

(Xi − X̄ )2
) (1)

When σ2 is unknown we have an unbiased point estimator of σ2

V̂ar(b1) =
s2∑

(Xi − X̄ )2
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Digression : Gauss-Markov Theorem

Theorem

In a regression model where E(εi ) = 0 and variance Var(εi ) = σ2 <∞ and
εi and εj are uncorrelated for all i and j the least squares estimators b0

and b1 are unbiased and have minimum variance among all unbiased linear
estimators.

No normality assumption on the error distribution!
Recall

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

b0 = Ȳ − b1X̄
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Proof

The theorem states that b1 as minimum variance among all unbiased
linear estimators of the form

β̂1 =
∑

ciYi

As this estimator must be unbiased we have

E(β̂1) =
∑

ci E(Yi )

=
∑

ci (β0 + β1Xi )

= β0

∑
ci + β1

∑
ciXi

= β1
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Proof cont.

Given the constraint

β0

∑
ci + β1

∑
ciXi = β1

clearly it must be the case that
∑

ci = 0 and
∑

ciXi = 1

The variance of this estimator is

Var(β̂1) =
∑

c2
i Var(Yi ) = σ2

∑
c2
i
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Proof cont.

Now define ci = ki + di where the ki are the constants we already defined
and the di are arbitrary constants.

ki =
(Xi − X̄ )∑
(Xi − X̄ )2

Let’s look at the variance of the estimator

Var(β̂1) =
∑

c2
i Var(Yi ) = σ2

∑
(ki + di )

2

= σ2(
∑

k2
i +

∑
d2
i + 2

∑
kidi )

Note we just demonstrated that

σ2
∑

k2
i = Var(b1)
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Proof cont.

Now by showing that
∑

kidi = 0 we’re almost done∑
kidi =

∑
ki (ci − ki )

=
∑

kici −
∑

k2
i

=
∑

ci

(
Xi − X̄∑
(Xi − X̄ )2

)
− 1∑

(Xi − X̄ )2

=

∑
ciXi − X̄

∑
ci∑

(Xi − X̄ )2
− 1∑

(Xi − X̄ )2
= 0

Recall
∑

ci = 0 and
∑

ciXi = 1.

Yang Feng (Columbia University) Inference in Regression Analysis 20 / 113



Proof end

So we are left with

Var(β̂1) = σ2(
∑

k2
i +

∑
d2
i )

= Var(b1) + σ2(
∑

d2
i )

which is minimized when all the di = 0. This means that the least squares
estimator b1 has minimum variance among all unbiased linear estimators.
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Sampling Distribution of (b1 − β1)/s(b1)

b1 is normally distributed so

b1 − β1√
Var(b1)

∼ N(0, 1)

We don’t know Var(b1) so it must be estimated from data. We have
already derived its estimate

If using the estimate V̂ar(b1) it can be shown that

b1 − β1

s(b1)
∼ t(n − 2)

s(b1) =

√
V̂ar(b1)
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Where does this come from?

For now we need to rely upon the following theorem

For the normal error regression model

SSE

σ2
=

∑
(Yi − Ŷi )

2

σ2
∼ χ2(n − 2)

and is independent of b0 and b1

Intuitively this follows the standard result for the sum of squared
normal random variables

Here there are two linear constraints imposed by the regression
parameter estimation that each reduce the number of degrees of
freedom by one.

We will revisit this subject soon.

Yang Feng (Columbia University) Inference in Regression Analysis 23 / 113



Another useful fact : t distributed random variables

Let z and χ2(ν) be independent random variables (standard normal and
χ2 respectively). The following random variable is a t-dstributed random
variable:

t(ν) =
z√
χ2(ν)
ν

This version of the t distribution has one parameter, the degrees of
freedom ν
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Distribution of the studentized statistic

To derive the distribution of this statistic, first we rewrite

b1 − β1

s(b1)
=

b1−β1

σ(b1)

s(b1)
σ(b1)

s(b1)

σ(b1)
=

√
V̂ar(b1)

Var(b1)
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Studentized statistic cont.

And note the following

V̂ar(b1)

Var(b1)
=

MSE∑
(Xi−X̄ )2

σ2∑
(Xi−X̄ )2

=
MSE

σ2
=

SSE

σ2(n − 2)

where we know (by the given theorem) the distribution of the last term is
χ2 and indep. of b1 and b0

SSE

σ2(n − 2)
∼ χ2(n − 2)

n − 2
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Studentized statistic final

But by the given definition of the t distribution we have our result

b1 − β1

s(b1)
∼ t(n − 2)

because putting everything together we can see that

b1 − β1

s(b1)
∼ z√

χ2(n−2)
n−2
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Confidence Intervals and Hypothesis Tests

Now that we know the sampling distribution of b1 (t with n− 2 degrees of
freedom) we can construct confidence intervals and hypothesis tests easily.

Things to think about

What does the t-distribution look like?

Why is the estimator distributed according to a t-distribution rather
than a normal distribution?

When performing tests, why does this matter?

When is it safe to cheat and use a normal approximation?
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Quick Review : Hypothesis Testing

Elements of a statistical test

Null hypothesis, H0

Alternative hypothesis, Ha

Test statistic
Rejection region
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Quick Review : Hypothesis Testing - Errors

Errors

A type I error is made if H0 is rejected when H0 is true. The probability
of a type I error is denoted by α. The value of α is called the level of
the test.
A type II error is made if H0 is accepted when Ha is true. The
probability of a type II error is denoted by β.

H0 is true Ha is true

Accept H0 Right decision Type II Error
Reject H0 Type I Error Right decision
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p-value

The p-value, or attained significance level, is the smallest level of
significance α for which the observed data indicate that the null
hypothesis should be rejected.
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Null Hypothesis

If the null hypothesis is that β1 = 0 then b1 should fall in the range around
zero. The further it is from 0 the less likely the null hypothesis is to hold.
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Alternative Hypothesis : Least Squares Fit

If we find that our estimated value of b1 deviates from 0 then we have to
determine whether or not that deviation would be surprising given the
model and the sampling distribution of the estimator. If it is sufficiently
(where we define what sufficient is by a confidence level) different then we
reject the null hypothesis.
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Testing This Hypothesis

Only have a finite sample

Different finite set of samples (from the same population / source)
will (almost always) produce different point estimates of β0 and β1

(b0, b1) given the same estimation procedure

Key point: b0 and b1 are random variables whose sampling
distributions can be statistically characterized

Hypothesis tests about β0 and β1 can be constructed using these
distributions.

Yang Feng (Columbia University) Inference in Regression Analysis 34 / 113



Confidence Interval Example

A machine fills cups with margarine, and is supposed to be adjusted
so that the content of the cups is µ = 250g of margarine.

Observed random variable X ∼ N (250, 2.5)
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Confidence Interval Example, Cont.

X1, ...,X25, a random sample from X .

The natural estimator is the sample mean: µ̂ = X̄ = 1
n

∑n
i=1 Xi .

Suppose the sample shows actual weights X1, ...,X25, with mean:

X̄ =
1

25

25∑
i=1

Xi = 250.2grams.
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Confidence Interval Example, Cont.

Say we want to get a confidence interval for µ.
By standardizing, we get a random variable

Z =
X̄ − µ
σ/
√
n

=
X̄ − µ

0.5

P(−z ≤ Z ≤ z) = 1− α = 0.95.

The number z follows from the cumulative distribution function:

Φ(z) = P(Z ≤ z) = 1− α
2 = 0.975, (2)

z = Φ−1(Φ(z)) = Φ−1(0.975) = 1.96, (3)
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Confidence Interval Example, Cont.

Now we get:

0.95 = 1− α = P(−z ≤ Z ≤ z) = P

(
−1.96 ≤ X̄ − µ

σ/
√
n
≤ 1.96

)
(4)

= P

(
X̄ − 1.96

σ√
n
≤ µ ≤ X̄ + 1.96

σ√
n

)
(5)

= P
(
X̄ − 1.96× 0.5 ≤ µ ≤ X̄ + 1.96× 0.5

)
(6)

= P
(
X̄ − 0.98 ≤ µ ≤ X̄ + 0.98

)
. (7)

This might be interpreted as: with probability 0.95 we will find a
confidence interval in which we will meet the parameter µ between the
stochastic endpoints

(X̄ − 0.98, X̄ + 0.98)
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Confidence Interval Example, Cont.

Therefore, our 0.95 confidence interval becomes:

(X̄ − 0.98, X̄ + 0.98) = (250.2− 0.98, 250.2 + 0.98) = (249.22, 251.18).
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Recap

We know that the point estimator of β1 is

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

We derived the sampling distribution of b1, it being
N (β1,Var(b1))(when σ2 known) with

Var(b1) = σ2{b1} =
σ2∑

(Xi − X̄ )2

And we suggested that an estimate of Var(b1) could be arrived at by
substituting the MSE for σ2 when σ2 is unknown.

s2{b1} =
MSE∑

(Xi − X̄ )2
=

SSE
n−2∑

(Xi − X̄ )2
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Sampling Distribution of (b1 − β1)/s{b1}

Since b1 is normally distributed,

b1 − β1

σ{b1}
∼ N (0, 1)

Using the estimate s2{b1},

b1 − β1

s{b1}
∼ t(n − 2),

where

s{b1} =
√

s2{b1}
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Confidence Interval for β1

Since the “studentized” statistic follows a t distribution, we can make the
following probability statement

P(t(α/2; n − 2) ≤ b1 − β1

s{b1}
≤ t(1− α/2; n − 2)) = 1− α

By symmetry
t(α/2; n − 2) = −t(1− α/2; n − 2),

We have the following confidence interval for β1,

P(b1− t(1−α/2; n−2)s{b1} ≤ β1 ≤ b1 + t(1−α/2; n−2)s{b1}) = 1−α

Look up the t distribution table (table B.2 in the appendix) and produce
confidence intervals.
Or R function

qt(1− α/2, n − 2)
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Remember

Density: f (y) = dF (y)
dy

Distribution (CDF): F (y) = P(Y ≤ y) =
∫ y
−∞ f (t)dt

Inverse CDF: F−1(p) = y s.t.
∫ y
−∞ f (t)dt = p
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1− α confidence limits for β1

The 1− α confidence limits for β1 are

b1 ± t(1− α/2; n − 2)s{b1}

Note that this quantity can be used to calculate confidence intervals
given n and α.

Fixing α can guide the choice of sample size if a particular confidence
interval is desired
Given a sample size, vice versa.

Also useful for hypothesis testing
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Tests Concerning β1

Example 1(Two-sided test)

H0 : β1 = 0
Ha : β1 6= 0
Test statistic

t∗ =
b1 − 0

s{b1}
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Tests Concerning β1

We have an estimate of the sampling distribution of b1 from the data.

If the null hypothesis holds then the b1 estimate coming from the
data should be within the 95% confidence interval of the sampling
distribution centered at 0 (in this case)

t∗ =
b1 − 0

s{b1}
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Decision rules

if |t∗| ≤ t(1− α/2; n − 2), acceptH0

if |t∗| > t(1− α/2; n − 2), rejectH0

Absolute values make the test two-sided
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Calculating the p-value

The p-value, or attained significance level, is the smallest level of
significance α for which the observed data indicate that the null
hypothesis should be rejected.

This can be looked up using the CDF of the test statistic.
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p-value Example

An experiment is performed to determine whether a coin flip is fair (50%
chance, each, of landing heads or tails) or unfairly biased (50% chance of
one of the outcomes).

Outcome: Suppose that the experimental results show the coin turning
up heads 14 times out of 20 total flips.
p-value: The p-value of this result would be the chance of a fair coin
landing on heads at least 14 times out of 20 flips
Calculation:

Prob(14 heads) + Prob(15 heads) + · · ·+ Prob(20 heads) (8)

=
1

220

[(
20

14

)
+

(
20

15

)
+ · · ·+

(
20

20

)]
=

60,460

1,048,576
≈ 0.058 (9)

Two sided p-value:
2 ∗ 0.058 = 0.116
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Power of the test

Power = P{Reject H0|δ} (10)

= P{|t∗| > t(1− α/2; n − 2)|δ} (11)

(12)

where δ is the noncentrality measure

δ =
|β1|
σ{b1}

t∗ =

b1−β1

σ(b1) + β1

σ(b1)

s(b1)
σ(b1)

(13)

Table B.5 presents the power of the two-sided t test.
Notice: the power depends on the value of σ2.

a = qt(1- alpha/2,n-2)

1- pt(a, n-2, delta) + pt(-a, n-2, delta)
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Inferences Concerning β0

Largely, inference procedures regarding β0 can be performed in the
same way as those for β1

Remember the point estimator b0 for β0

b0 = Ȳ − b1X̄
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Sampling distribution of b0

The sampling distribution of b0 refers to the different values of b0

that would be obtained with repeated sampling when the levels of the
predictor variable X are held constant from sample to sample.

For the normal regression model the sampling distribution of b0 is
normal
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Sampling distribution of b0

When error variance is known

E(b0) = β0

σ2{b0} = σ2(
1

n
+

X̄ 2∑
(Xi − X̄ )2

)

When error variance is unknown

s2{b0} = MSE (
1

n
+

X̄ 2∑
(Xi − X̄ )2

)
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Confidence interval for β0

The 1− α confidence limits for β0 are obtained in the same manner as
those for β1

b0 ± t(1− α/2; n − 2)s{b0}
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Considerations on Inferences on β0 and β1

Effects of departures from normality of the Yi

The estimators of β0 and β1 have the property of asymptotic
normality - their distributions approach normality as the sample size
increases (under general conditions)

Spacing of the X levels
The variances of b0 and b1 (for a given n and σ2) depend strongly on
the spacing of X
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Sampling distribution of point estimator of mean response

Let Xh be the level of X for which we would like an estimate of the
mean response
Needs to be one of the observed X’s

The mean response when X = Xh is denoted by

E(Yh) = β0 + β1Xh

The point estimator of E(Yh) is

Ŷh = b0 + b1Xh

We are interested in the sampling distribution of this quantity
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Sampling Distribution of Ŷh

We have
Ŷh = b0 + b1Xh

Since this quantity is itself a linear combination of the Y ′i s it’s
sampling distribution is itself normal.

The mean of the sampling distribution is

E{Ŷh} = E{b0}+ E{b1}Xh = β0 + β1Xh

Biased or unbiased?
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Sampling Distribution of Ŷh

To derive the sampling distribution variance of the mean response we
first show that b1 and (1/n)

∑
Yi are uncorrelated and, hence, for the

normal error regression model independent

We start with the definitions

Ȳ =
∑

(
1

n
)Yi

b1 =
∑

kiYi , ki =
(Xi − X̄ )∑
(Xi − X̄ )2
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Sampling Distribution of Ŷh

We want to show that mean response and the estimate b1 are
uncorrelated

Cov(Ȳ , b1) = σ2{Ȳ , b1} = 0

To do this we need the following result (A.32)

σ2{
n∑

i=1

aiYi ,

n∑
i=1

ciYi} =
n∑

i=1

aiciσ
2{Yi}

when the Yi are independent
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Sampling Distribution of Ŷh

Using this fact we have

σ2{
n∑

i=1

1

n
Yi ,

n∑
i=1

kiYi} =
n∑

i=1

1

n
kiσ

2{Yi}

=
n∑

i=1

1

n
kiσ

2

=
σ2

n

n∑
i=1

ki

= 0

So the Ȳ and b1 are uncorrelated
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Sampling Distribution of Ŷh

This means that we can write down the variance

σ2{Ŷh} = σ2{Ȳ + b1(Xh − X̄ )}

alternative and equivalent form of regression function

But we know that Ȳ and b1 are uncorrelated so

σ2{Ŷh} = σ2{Ȳ }+ σ2{b1}(Xh − X̄ )2
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Sampling Distribution of Ŷh

We know

σ2{b1} =
σ2∑

(Xi − X̄ )2

s2{b1} =
MSE∑

(Xi − X̄ )2

And we can find

σ2{Ȳ } =
1

n2

∑
σ2{Yi} =

nσ2

n2
=
σ2

n
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Sampling Distribution of Ŷh

So, plugging in, we get

σ2{Ŷh} =
σ2

n
+

σ2∑
(Xi − X̄ )2

(Xh − X̄ )2

Or

σ2{Ŷh} = σ2

(
1

n
+

(Xh − X̄ )2∑
(Xi − X̄ )2

)
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Sampling Distribution of Ŷh

Since we often won’t know σ2 we can, as usual, plug in s2 = SSE/(n− 2),
our estimate for it to get our estimate of this sampling distribution variance

s2{Ŷh} = s2

(
1

n
+

(Xh − X̄ )2∑
(Xi − X̄ )2

)
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No surprise. . .

The sampling distribution of our point estimator for the output is
distributed as a t-distribution with n − 2 degrees of freedom

Ŷh − E{Yh}
s{Ŷh}

∼ t(n − 2)

This means that we can construct confidence intervals in the same
manner as before.
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Confidence Intervals for E(Yh)

The 1− α confidence intervals for E(Yh) are

Ŷh ± t(1− α/2; n − 2)s{Ŷh}

From this hypothesis tests can be constructed as usual.
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Comments

The variance of the estimator for E(Yh) is smallest near the mean of
X. Designing studies such that the mean of X is near Xh will improve
inference precision

When Xh is zero the variance of the estimator for E(Yh) reduces to
the variance of the estimator b0 for β0
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Confidence Band for Regression Line

At times, we want to get a confidence band for the entire regression
line E{Y } = β0 + β1X .

The Working-Hotelling 1− α confidence band is

Ŷh ±W × s{Ŷh}

here W 2 = 2F (1− α; 2, n − 2).

Same form as before, except the t multiple is replaced with the W
multiple.

R code:

qf (1− α/2, 2, n − 2)
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Prediction interval for single new observation

Essentially follows the sampling distribution arguments for E(Yh)

If all regression parameters are known then the 1− α prediction
interval for a new observation Yh is

E{Yh} ± z(1− α/2)σ
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Prediction interval for single new observation

If the regression parameters are unknown the 1− α prediction interval
for a new observation Yh is given by the following theorem

Ŷh ± t(1− α/2; n − 2)s{pred}

This is very nearly the same as prediction for a known value of X but
includes a correction for the fact that there is additional variability
arising from the fact that the new input location was not used in the
original estimates of b1, b0, and s2
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Prediction interval for single new observation

We have

σ2{pred} = σ2{Yh − Ŷh} = σ2{Yh}+ σ2{Ŷh} = σ2 + σ2{Ŷh}

An unbiased estimator of σ2{pred} is s2{pred} = MSE + s2{Ŷh}, which
is given by

s2{pred} = MSE

[
1 +

1

n
+

(Xh − X̄ )2∑
(Xi − X̄ )2

]

Confidence Interval: represents an inference on a parameter, and is an
interval which is intended to cover the value of the parameter.

Prediction Interval: a statement about the value to be taken by a
random variable. Wider than confidence interval.
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Prediction interval for the mean of m new observations for
given Xh

Ŷh ± t(1− α/2; n − 2)s{predmean}

An unbiased estimator of σ2{pred} is s2{predmean} = MSE
m + s2{Ŷh},

which is given by

s2{predmean} = MSE

[
1

m
+

1

n
+

(Xh − X̄ )2∑
(Xi − X̄ )2

]
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ANOVA

ANOVA is nothing new but is instead a way of organizing the parts of
linear regression so as to make easy inference recipes.

Will return to ANOVA when discussing multiple regression and other
types of linear statistical models.
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Partitioning Total Sum of Squares

“The ANOVA approach is based on the partitioning of sums of
squares and degrees of freedom associated with the response variable
Y”

We start with the observed deviations of Yi around the observed mean

Yi − Ȳ
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Partitioning of Total Deviations
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Measure of Total Variation

The measure of total variation is denoted by

SSTO =
∑

(Yi − Ȳ )2

SSTO stands for total sum of squares

If all Y ′i s are the same, SSTO = 0

The greater the variation of the Y ′i s the greater SSTO
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Variation after predictor effect

The measure of variation of the Y ′i s that is still present when the
predictor variable X is taken into account is the sum of the squared
deviations

SSE =
∑

(Yi − Ŷi )
2

SSE denotes error sum of squares
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Regression Sum of Squares

The difference between SSTO and SSE is SSR

SSR =
∑

(Ŷi − Ȳ )2

SSR stands for regression sum of squares

Yang Feng (Columbia University) Inference in Regression Analysis 78 / 113



Partitioning of Sum of Squares

Yi − Ȳ︸ ︷︷ ︸
Total deviation

= Ŷi − Ȳ︸ ︷︷ ︸
Deviation of fitted regression value around mean

+ Yi − Ŷi︸ ︷︷ ︸
Deviation around fitted regression line
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Remarkable Property

The sums of the same deviations squared has the same property!∑
(Yi − Ȳ )2 =

∑
(Ŷi − Ȳ )2 +

∑
(Yi − Ŷi )

2

or
SSTO = SSR + SSE
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Proof

∑
(Yi − Ȳ )2 =

∑
[(Ŷi − Ȳ ) + (Yi − Ŷi )]2

=
∑

[(Ŷi − Ȳ )2 + (Yi − Ŷi )
2 + 2(Ŷi − Ȳ )(Yi − Ŷi )]

=
∑

(Ŷi − Ȳ )2 +
∑

(Yi − Ŷi )
2 + 2

∑
(Ŷi − Ȳ )(Yi − Ŷi )

but ∑
(Ŷi − Ȳ )(Yi − Ŷi ) =

∑
Ŷi (Yi − Ŷi )−

∑
Ȳ (Yi − Ŷi ) = 0

By properties previously demonstrated. Namely∑
Ŷiei = 0

and ∑
ei = 0
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Breakdown of Degrees of Freedom

SSTO
1 linear constraint due to the calculation and inclusion of the mean

n-1 degrees of freedom

SSE
2 linear constraints arising from the estimation of β1 and β0

n-2 degrees of freedom

SSR
Two degrees of freedom in the regression parameters, one is lost due to
linear constraint

1 degree of freedom
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Mean Squares

A sum of squares divided by its associated degrees of freedom is called a
mean square
The regression mean square is

MSR =
SSR

1
= SSR

The mean square error is

MSE =
SSE

n − 2
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ANOVA table for simple lin. regression

Source of Variation SS df MS E(MS)

Regression SSR =
∑

(Ŷi − Ȳ )2 1 MSR = SSR/1 σ2 + β2
1

∑
(Xi − X̄ )2

Error SSE =
∑

(Yi − Ŷi )
2 n − 2 MSE = SSE/(n − 2) σ2

Total SSTO =
∑

(Yi − Ȳ )2 n − 1
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E{MSE} = σ2

Remember the following theorem, presented in an earlier lecture.

For the normal error regression model, SSE
σ2 is distributed as χ2 with

n − 2 degrees of freedom and is independent of both b0 and b1.

Rewritten this yields

SSE/σ2 ∼ χ2(n − 2)

That means that E{SSE/σ2} = n − 2

And thus that E{SSE/(n − 2)} = E{MSE} = σ2
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E{MSR} = σ2 + β2
1

∑
(Xi − X̄ )2

To begin, we take an alternative but equivalent form for SSR

SSR = b2
1

∑
(Xi − X̄ )2

And note that, by definition of variance we can write

σ2{b1} = E{b2
1} − (E{b1})2
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E{MSR} = σ2 + β2
1

∑
(Xi − X̄ )2

But we know that b1 is an unbiased estimator of β1 so E{b1} = β1

We also know (from previous lectures) that

σ2{b1} =
σ2∑

(Xi − X̄ )2

So we can rearrange terms and plug in

σ2{b1} = E{b2
1} − (E{b1})2

E{b2
1} =

σ2∑
(Xi − X̄ )2

+ β2
1
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E{MSR} = σ2 + β2
1

∑
(Xi − X̄ )2

From the previous slide

E{b2
1} =

σ2∑
(Xi − X̄ )2

+ β2
1

Which brings us to this result
E{MSR} = E{SSR/1} = E{b2

1}
∑

(Xi − X̄ )2 = σ2 + β2
1

∑
(Xi − X̄ )2
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Comments and Intuition

The mean of the sampling distribution of MSE is σ2 regardless of
whether X and Y are linearly related (i.e. whether β1 = 0)

The mean of the sampling distribution of MSR is also σ2 when
β1 = 0.

When β1 = 0 the sampling distributions of MSR and MSE tend to be
the same
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F Test of β1 = 0 vs. β1 6= 0

ANOVA provides a battery of useful tests. For example, ANOVA provides
an easy test for
Two-sided test

H0 : β1 = 0 v.s. Ha : β1 6= 0

Test statistic from before

t∗ =
b1 − 0

s{b1}
ANOVA test statistic

F ∗ =
MSR

MSE

Yang Feng (Columbia University) Inference in Regression Analysis 90 / 113



Sampling distribution of F ∗

The sampling distribution of F ∗ when H0 : β1 = 0 holds can be
derived from Cochran’s theorem

Cochran’s theorem
If all n observations Yi come from the same normal distribution with
mean µ and variance σ2, and SSTO is decomposed into k sums of
squares SSr , each with degrees of freedom dfr , then the SSr/σ

2 terms
are independent χ2 variables with dfr degrees of freedom if

k∑
r=1

dfr = n − 1
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The F Test

We have decomposed SSTO into two sums of squares SSR and SSE and
their degrees of freedom are additive, hence, by Cochran’s theorem:
If β1 = 0 so that all Yi have the same mean µ = β0 and the same variance
σ2, SSE/σ2 and SSR/σ2 are independent χ2 variables
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F ∗ Test Statistic

F ∗ can be written as follows

F ∗ =
MSR

MSE
=

SSR/σ2

1
SSE/σ2

n−2

But by Cochran’ s theorem, we have when H0 holds

F ∗ ∼
χ2(1)

1
χ2(n−2)
n−2
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F Distribution

The F distribution is the ratio of two independent χ2 random
variables normalized by their corresponding degrees of freedom.

The test statistic F ∗ follows the distribution

F ∗ ∼ F (1, n − 2)
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Hypothesis Test Decision Rule

Since F ∗ is distributed as F (1, n − 2) when H0 holds, the decision rule to
follow when the risk of a Type I error is to be controlled at α is:

If F ∗ ≤ F (1− α; 1, n − 2), conclude H0

If F ∗ > F (1− α; 1, n − 2), conclude Ha
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F distribution

PDF, CDF, Inverse CDF of F distribution

Note, MSR/MSE must be big in order to reject hypothesis.
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Partitioning of Total Deviations

Does this make sense? When is MSR/MSE big?
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Equivalence of F test and two-sided t test

F ∗ =
MSR

MSE
(14)

=
b2

1

∑
(Xi − X̄ )2

MSE
(15)

=
b2

1

s2{b1}
(16)

=

(
b1

s{b1}

)2

(17)

= (t∗)2 (18)

In addition: F (1− α; 1, n − 2) = t(1− α/2; n − 2)2.
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General Linear Test

The test of β1 = 0 versus β1 6= 0 is a simple example of a general
linear test.

The general linear test has three parts

Full Model
Reduced Model
Test Statistic
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Full Model Fit

A full linear model is first fit to the data

Yi = β0 + β1Xi + εi

Using this model the error sum of squares is obtained, here for
example the simple linear model with non-zero slope is the “full”
model

SSE (F ) =
∑

[Yi − (b0 + b1Xi )]2 =
∑

(Yi − Ŷi )
2 = SSE
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Fit Reduced Model

One can test the hypothesis that a simpler model is a “better” model
via a general linear test (which is really a likelihood ratio test in
disguise). For instance, consider a “reduced” model in which the
slope is zero (i.e. no relationship between input and output).

H0 : β1 = 0
Ha : β1 6= 0

The model when H0 holds is called the reduced or restricted model.

Yi = β0 + εi

The SSE for the reduced model is obtained

SSE (R) =
∑

(Yi − b0)2 =
∑

(Yi − Ȳ )2 = SSTO
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Test Statistic

The idea is to compare the two error sums of squares SSE(F) and
SSE(R).

Because the full model F has more parameters than the reduced
model, SSE (F ) ≤ SSE (R) always

In the general linear test, the test statistic is

F ∗ =

SSE(R)−SSE(F )
dfR−dfF
SSE(F )

dfF

which follows the F distribution when H0 holds.

dfR and dfF are those associated with the reduced and full model
error sums of squares respectively

Yang Feng (Columbia University) Inference in Regression Analysis 102 / 113



R2 (Coefficient of determination)

SSTO measures the variation in the observations Yi when X is not
considered

SSE measures the variation in the Yi after a predictor variable X is
employed

A natural measure of the effect of X in reducing variation in Y is to
express the reduction in variation (SSTO − SSE = SSR) as a
proportion of the total variation

R2 =
SSR

SSTO
= 1− SSE

SSTO

Note that since 0 ≤ SSE ≤ SSTO then 0 ≤ R2 ≤ 1
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Limitations of and misunderstandings about R2

1 Claim: high R2 indicates that useful predictions can be made. The
prediction interval for a particular input of interest may still be wide
even if R2 is high.

2 Claim: high R2 means that there is a good linear fit between
predictor and output. It can be the case that an approximate (bad)
linear fit to a truly curvilinear relationship might result in a high R2.

3 Claim: low R2 means that there is no relationship between input and
output. Also not true since there can be clear and strong relationships
between input and output that are not well explained by a linear
functional relationship.
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Coefficient of Correlation

r = ±
√
R2

Range:
−1 ≤ r ≤ 1

if b1 > 0, r =
√
R2,

if b1 < 0, r = −
√
R2.
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Normal Correlation Models

Some times, correlation models are more natural than regression models,
such as

Relationship between sales of gasoline and sales of auxiliary products.

Relationship between blood pressure and age.

Difference between Regression models and Correlation models

Regression models: X values are known constants.

Correlation models: Both X and Y are random.
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Bivariate Normal Density

f (Y1,Y2) =
1

2πσ1σ2

√
1− ρ2

12

exp{− 1

2(1− ρ2
12)

[(
Y1 − µ1

σ1
)2

−2ρ12(
Y1 − µ1

σ1
)(
Y2 − µ2

σ2
) + (

Y2 − µ2

σ2
)2]}

Parameters: µ1, µ2, σ1, σ2, ρ12

Here, ρ12 is the coefficient of correlation between variable Y1 and Y2.

ρ12 = ρ{Y1,Y2} =
σ12

σ1σ2

σ12 = σ{Y1,Y2} = E{(Y1 − µ1)(Y2 − µ2)}
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Marginal Density

Marginal distribution of Y1 is normal with mean µ1 and standard deviation
σ1:

f1(Y1) =
1√

2πσ1

exp[−1

2
(
Y1 − µ1

σ1
)2]

How to get it from the bivariate density function?
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Conditional Inferences

f (Y1|Y2) =
f (Y1,Y2)

f2(Y2)

=
1√

2πσ1|2
exp[−1

2
(
Y1 − α1|2 − β12Y2

σ1|2
)2]

Here
α1|2 = µ1 − µ2ρ12

σ1

σ2

β12 = ρ12
σ1

σ2

σ2
1|2 = σ2

1(1− ρ2
12)
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Inferences on Correlation Coefficients

Maximum Likelihood Estimation of ρ12 (Pearson Product-moment
Correlation Coefficient):

r12 =

∑
(Yi1 − Ȳ1)(Yi2 − Ȳ2)

[
∑

(Yi1 − Ȳ1)2
∑

(Yi2 − Ȳ2)2]1/2

Usually biased, but bias is small when n is large.
Test whether ρ12 = 0

H0 : ρ12 = 0

v.s.
H1 : ρ12 6= 0

Test Statistics:

t∗ =
r12

√
n − 2√

1− r2
12

If H0 holds, t∗ follows the t(n − 2) distribution.
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Interval Estimation of ρ12

Make the Fisher z transformation:

z ′ =
1

2
loge(

1 + r12

1− r12
)

When n is large (n > 25), approximately normally distributed with

E{z ′} = ζ =
1

2
loge(

1 + ρ12

1− ρ12
)

σ2{z ′} =
1

n − 3

Then we can make interval estimate

z ′ − ζ
σ{z ′}

is approximately standard normal. Then 1− α confidence limits for ζ are

z ′ ± z(1− α/2)σ{z ′}
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Spearman Rank Correlation Coefficient

Denote the rank of Yi1 by Ri1 and the rank of Yi2 by Ri2. The ranks
are from 1 to n.

The Spearman Rank Correlation Coefficient rS is then defined as

rS =

∑
(Ri1 − R̄1)(Ri2 − R̄2)

[
∑

(Ri1 − R̄1)2
∑

(Ri2 − R̄2)2]1/2

as before −1 ≤ rS ≤ 1.

More robust compared with the Pearson correlation coefficient.
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