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Course Description

Theory and practice of regression analysis, Simple and multiple regression,
including testing, estimation, and confidence procedures, modeling,
regression diagnostics and plots, polynomial regression, colinearity and
confounding, model selection, geometry of least squares. Extensive use of
the computer to analyze data.

Course website: http://www.stat.columbia.edu/~yangfeng/W4315

Required Text: Applied Linear Regression Models (4th Ed.)
Authors: Kutner, Nachtsheim, Neter
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Philosophy and Style

Easy first half.

Difficult second half.

Some digressions from the required book.

Understanding = proof (derivation) + implementation.

Practice makes perfect.
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Course Outline

First half of the course is single variable linear regression.

Least squares

Maximum likelihood, normal model

Tests / inferences

ANOVA

Diagnostics

Remedial Measures
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Course Outline (Continued)

Second half of the course is multiple linear regression and other related
topics .

Multiple linear Regression

Linear algebra review
Matrix approach to linear regression
Multiple predictor variables
Diagnostics
Tests
Model selection

Other topics (If time permits)

Principle Component Analysis
Generalized Linear Models
Introduction to Bayesian Inference
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Requirements

Calculus

Derivatives, gradients, convexity

Linear algebra

Matrix notation, inversion, eigenvectors, eigenvalues, rank

Probability and Statistics

Random variable
Expectation, variance
Estimation
Bias/Variance
Basic probability distributions
Hypothesis Testing
Confidence Interval
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Software

R will be used throughout the course and it is required in all homework.
An R tutorial session will be given on Sep 5 (Bring your laptop!).
Reasons for R:

Completely free software. Can be downloaded from
http://cran.r-project.org/

Available on various systems, PC, MAC, Linux, and even

Iphone and
Ipad!

Advanced yet easy to use.

An Introduction to R: http://cran.r-project.org/doc/manuals/R-intro.pdf
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Grading

Weekly homework (20%)
DUE 6pm every Tuesday in W4315-Inbox at 904@SSW
You can collect graded homework in W4315-Outbox at 904@SSW
NO late homework accepted
Lowest score will be dropped

In Class Midterm exam (30%)
In Class Final exam (50%).
Exams are close book, close notes! One double-sided cheat sheet is
allowed.

Letter grade will look like the histogram of a normal distribution.
Let’s have a look at Spring 2013’s distribution:
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Office Hours / Website

http://www.stat.columbia.edu/~yangfeng

Course Materials and homework with the due dates will be posted on
the course website.

Office hours : Thursday 10am-noon subject to change

Office Location : Room 1012, SSW Building (1255 Amsterdam
Avenue, between 121st and 122nd street)
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Why regression?

Want to model a functional relationship between an “predictor
variable” (input, independent variable, etc.) and a “response
variable” (output, dependent variable, etc.)

Examples?

But real world is noisy, no f = ma

Observation noise
Process noise

Two distinct goals

(Estimation) Understanding the relationship between predictor variables
and response variables
(Prediction) Predicting the future response given the new observed
predictors.
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History

Sir Francis Galton, 19th century

Studied the relation between heights of parents and children and noted
that the children “regressed” to the population mean

“Regression” stuck as the term to describe statistical relations
between variables
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Example Applications

Trend lines, eg. Google over 6 mo.
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Others

Epidemiology

Relating lifespan to obesity or smoking habits etc.

Science and engineering

Relating physical inputs to physical outputs in complex systems

Brain
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Aims for the course

Given something you would like to predict and some number of
covariates

What kind of model should you use?
Which variables should you include?
Which transformations of variables and interaction terms should you
use?

Given a model and some data

How do you fit the model to the data?
How do you express confidence in the values of the model parameters?
How do you regularize the model to avoid over-fitting and other related
issues?
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Data for Regression Analysis

Observational Data
Example: relation between age of employee (X ) and number of days
of illness last year (Y )
Cannot be controlled!

Experimental Data
Example: an insurance company wishes to study the relation between
productivity of its analysts in processing claims (Y ) and length of
training X .

Treatment: the length of training
Experimental Units: the analysts included in the study.

Completely Randomized Design: Most basic type of statistical design
Example: same example, but every experimental unit has an equal
chance to receive any one of the treatments.
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Questions?

Good time to ask now.
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Simple Linear Regression

Want to find parameters for a function of the form

Yi = β0 + β1Xi + εi

Distribution of error random variable not specified
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Quick Example - Scatter Plot
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Formal Statement of Model

Yi = β0 + β1Xi + εi

Yi value of the response variable in the i th trial

β0 and β1 are parameters

Xi is a known constant, the value of the predictor variable in the i th

trial

εi is a random error term with mean E(εi ) = 0 and variance
Var(εi ) = σ2

εi and εj are uncorrelated

i = 1, . . . , n
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Properties

The response Yi is the sum of two components

Constant term β0 + β1Xi

Random term εi

The expected response is

E(Yi ) = E(β0 + β1Xi + εi )

= β0 + β1Xi + E(εi )

= β0 + β1Xi
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Expectation Review

Suppose X has probability density function f (x).

Definition

E(X ) =

∫
xf (x)dx .

Linearity property

E(aX ) = aE(X )

E(aX + bY ) = aE(X ) + bE(Y )

Obvious from definition
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Example Expectation Derivation

Suppose p.d.f of X is
f (x) = 2x , 0 ≤ x ≤ 1

Expectation

E(X ) =

∫ 1

0
xf (x)dx

=

∫ 1

0
2x2dx

=
2x3

3
|10

=
2

3
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Expectation of a Product of Random Variables

If X ,Y are random variables with joint density function f (x , y) then the
expectation of the product is given by

E(XY ) =

∫
XY

xyf (x , y)dxdy .
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Expectation of a product of random variables

What if X and Y are independent? If X and Y are independent with
density functions f1 and f2 respectively then

E(XY ) =

∫
XY

xyf1(x)f2(y)dxdy

=

∫
X

∫
Y
xyf1(x)f2(Y )dxdy

=

∫
X
xf1(x)[

∫
Y
yf2(y)dy ]dx

=

∫
X
xf1(x)E(Y )dX

= E(X )E(Y )
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Regression Function

The response Yi comes from a probability distribution with mean

E(Yi ) = β0 + β1Xi

This means the regression function is

E(Y ) = β0 + β1X

Since the regression function relates the means of the probability
distributions of Y for a given X to the level of X
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Error Terms

The response Yi in the i th trial exceeds or falls short of the value of
the regression function by the error term amount εi

The error terms εi are assumed to have constant variance σ2
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Response Variance

Responses Yi have the same constant variance

Var(Yi ) = Var(β0 + β1Xi + εi )

= Var(εi )

= σ2
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Variance (2nd central moment) Review

Continuous distribution

Var(X ) = E[(X − E(X ))2] =

∫
(x − E(X ))2f (x)dx

Discrete distribution

Var(X ) = E[(X − E(X ))2] =
∑
i

(Xi − E(X ))2P(X = Xi )

Alternative Form for Variance:

Var(X ) = E(X 2)− E(X )2.
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Example Variance Derivation

f (x) = 2x , 0 ≤ x ≤ 1

Var(X ) = E(X 2)− E(X )2

=

∫ 1

0
2xx2dx − (

2

3
)2

=
2x4

4
|10 −

4

9

=
1

2
− 4

9

=
1

18
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Variance Properties

Var(aX ) = a2 Var(X )

Var(aX + bY ) = a2 Var(X ) + b2 Var(Y ) if X ⊥ Y

Var(a + cX ) = c2 Var(X ) if a and c are both constants

More generally

Var(
∑

aiXi ) =
∑
i

∑
j

aiajCov(Xi ,Xj)
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Covariance

The covariance between two real-valued random variables X and Y, with
expected values E(X ) = µ and E(Y ) = ν is defined as

Cov(X ,Y ) = E((X − µ)(Y − ν))

= E(XY )− µν.

If X ⊥ Y ,
E(XY ) = E(X )E(Y ) = µν.

Then
Cov(X ,Y ) = 0
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Formal Statement of Model

Yi = β0 + β1Xi + εi

Yi value of the response variable in the i th trial

β0 and β1 are parameters

Xi is a known constant, the value of the predictor variable in the i th

trial

εi is a random error term with mean E(εi ) = 0 and variance
Var(εi ) = σ2

i = 1, . . . , n
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Example

An experimenter gave three subjects a very difficult task. Data on the age
of the subject (X ) and on the number of attempts to accomplish the task
before giving up (Y ) follow:

Table :

Subject i 1 2 3

Age Xi 20 55 30
Number of Attempts Yi 5 12 10

Yang Feng (Columbia University) Introduction to Simple Linear Regression 33 / 70



Least Squares Linear Regression

Goal: make Yi and b0 + b1Xi close for all i .

Proposal 1: minimize
∑n

i=1[Yi − (b0 + b1Xi )].

Proposal 2: minimize
∑n

i=1 |Yi − (b0 + b1Xi )|.
Final Proposal: minimize

Q(b0, b1) =
n∑

i=1

[Yi − (b0 + b1Xi )]2

Choose b0 and b1 as estimators for β0 and β1.

b0 and b1 will minimize the criterion Q for the given sample
observations (X1,Y1), (X2,Y2), · · · , (Xn,Yn).
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Guess #1
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Guess #2
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Function maximization

Important technique to remember!

Take derivative
Set result equal to zero and solve
Test second derivative at that point

Question: does this always give you the maximum?

Going further: multiple variables, convex optimization
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Function Maximization

Find the value of x that maximize the function

f (x) = −x2 + log(x), x > 0

1. Take derivative

d

dx
(−x2 + log(x)) = 0 (1)

−2x +
1

x
= 0 (2)

2x2 = 1 (3)

x2 =
1

2
(4)

x =

√
2

2
(5)
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2. Check second order derivative

d2

dx2
(−x2 + log(x)) =

d

dx
(−2x +

1

x
) (6)

= −2− 1

x2
(7)

< 0 (8)

Then we have found the maximum. x∗ =
√
2
2 , f (x∗) = −1

2 [1 + log(2)].
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Least Squares Minimization

Function to minimize w.r.t. b0 and b1

b0 and b1 are called point estimators of β0 and β1 respectively

Q(b0, b1) =
n∑

i=1

[Yi − (b0 + b1Xi )]2

Find partial derivatives and set both equal to zero

∂Q

∂b0
= 0

∂Q

∂b1
= 0
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Normal Equations

The result of this maximization step are called the normal equations.
b0 and b1 are called point estimators of β0 and β1 respectively.∑

Yi = nb0 + b1
∑

Xi (9)∑
XiYi = b0

∑
Xi + b1

∑
X 2
i (10)

This is a system of two equations and two unknowns.
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Solution to Normal Equations

After a lot of algebra one arrives at

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

b0 = Ȳ − b1X̄

X̄ =

∑
Xi

n

Ȳ =

∑
Yi

n
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Least Square Fit
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Properties of Solution

The i th residual is defined to be

ei = Yi − Ŷi

The sum of the residuals is zero from (9).∑
i

ei =
∑

(Yi − b0 − b1Xi )

=
∑

Yi − nb0 − b1
∑

Xi

= 0

The sum of the observed values Yi equals the sum of the fitted values
Ŷi ∑

i

Ŷi =
∑
i

Yi
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Properties of Solution

The sum of the weighted residuals is zero when the residual in the i th trial
is weighted by the level of the predictor variable in the i th trial from (10).∑

i

Xiei =
∑

(Xi (Yi − b0 − b1Xi ))

=
∑
i

XiYi − b0
∑

Xi − b1
∑

X 2
i

= 0
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Properties of Solution

The sum of the weighted residuals is zero when the residual in the i th trial
is weighted by the fitted value of the response variable in the i th trial∑

i

Ŷiei =
∑
i

(b0 + b1Xi )ei

= b0
∑
i

ei + b1
∑
i

Xiei

= 0
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Properties of Solution

The regression line always goes through the point

X̄ , Ȳ

Using the alternative format of linear regression model:

Yi = β∗0 + β1(Xi − X̄ ) + εi

The least squares estimator b1 for β1 remains the same as before. The
least squares estimator for β∗0 = β0 + β1X̄ becomes

b∗0 = b0 + b1X̄ = (Ȳ − b1X̄ ) + b1X̄ = Ȳ

Hence the estimated regression function is

Ŷ = Ȳ + b1(X − X̄ )

Apparently, the regression line always goes through the point (X̄ , Ȳ ).
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Estimating Error Term Variance σ2

Review estimation in non-regression setting.

Show estimation results for regression setting.
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Estimation Review

An estimator is a rule that tells how to calculate the value of an
estimate based on the measurements contained in a sample

i.e. the sample mean

Ȳ =
1

n

n∑
i=1

Yi
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Point Estimators and Bias

Point estimator
θ̂ = f ({Y1, . . . ,Yn})

Unknown quantity / parameter

θ

Definition: Bias of estimator

Bias(θ̂) = E(θ̂)− θ
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Example

Samples
Yi ∼ N(µ, σ2)

Estimate the population mean

θ = µ, θ̂ = Ȳ =
1

n

n∑
i=1

Yi
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Sampling Distribution of the Estimator

First moment

E(θ̂) = E(
1

n

n∑
i=1

Yi )

=
1

n

n∑
i=1

E(Yi ) =
nµ

n
= θ

This is an example of an unbiased estimator

Bias(θ̂) = E(θ̂)− θ = 0
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Variance of Estimator

Definition: Variance of estimator

Var(θ̂) = E([θ̂ − E(θ̂)]2)

Remember:

Var(cY ) = c2 Var(Y )

Var(
n∑

i=1

Yi ) =
n∑

i=1

Var(Yi )

Only if the Yi are independent with finite variance
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Example Estimator Variance

Var(θ̂) = Var(
1

n

n∑
i=1

Yi )

=
1

n2

n∑
i=1

Var(Yi )

=
nσ2

n2

=
σ2

n
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Bias Variance Trade-off

The mean squared error of an estimator

MSE (θ̂) = E([θ̂ − θ]2)

Can be re-expressed

MSE (θ̂) = Var(θ̂) + [Bias(θ̂)]2
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MSE = VAR + BIAS2

Proof

MSE (θ̂)

= E((θ̂ − θ)2)

= E(([θ̂ − E(θ̂)] + [E(θ̂)− θ])2)

= E([θ̂ − E(θ̂)]2) + 2E([E(θ̂)− θ][θ̂ − E(θ̂)]) + E([E(θ̂)− θ]2)

= Var(θ̂) + 2E([E(θ̂)[θ̂ − E(θ̂)]− θ[θ̂ − E(θ̂)])) + (Bias(θ̂))2

= Var(θ̂) + 2(0 + 0) + (Bias(θ̂))2

= Var(θ̂) + (Bias(θ̂))2
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Trade-off

Think of variance as confidence and bias as correctness.

Intuitions (largely) apply

Sometimes choosing a biased estimator can result in an overall lower
MSE if it has much lower variance than the unbiased one.
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s2 estimator for σ2 for Single population

Sum of Squares:
n∑

i=1

(Yi − Ȳ )2

Sample Variance Estimator:

s2 =

∑n
i=1(Yi − Ȳ )2

n − 1

s2 is an unbiased estimator of σ2.

The sum of squares SSE has n − 1 “degrees of freedom” associated
with it, one degree of freedom is lost by using Ȳ as an estimate of the
unknown population mean µ.
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Estimating Error Term Variance σ2 for Regression Model

Regression model

Variance of each observation Yi is σ2 (the same as for the error term
εi )

Each Yi comes from a different probability distribution with different
means that depend on the level Xi

The deviation of an observation Yi must be calculated around its own
estimated mean.
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s2 estimator for σ2

s2 = MSE =
SSE

n − 2
=

∑
(Yi − Ŷi )

2

n − 2
=

∑
e2i

n − 2

MSE is an unbiased estimator of σ2

E(MSE ) = σ2

The sum of squares SSE has n − 2 “degrees of freedom” associated
with it.

Cochran’s theorem (later in the course) tells us where degree’s of
freedom come from and how to calculate them.
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Normal Error Regression Model

No matter how the error terms εi are distributed, the least squares
method provides unbiased point estimators of β0 and β1

that also have minimum variance among all unbiased linear estimators

To set up interval estimates and make tests we need to specify the
distribution of the εi

We will assume that the εi are normally distributed.
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Normal Error Regression Model

Yi = β0 + β1Xi + εi

Yi value of the response variable in the i th trial

β0 and β1 are parameters

Xi is a known constant, the value of the predictor variable in the i th

trial

εi ∼iid N(0, σ2)
note this is different, now we know the distribution

i = 1, . . . , n
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Notational Convention

When you see εi ∼iid N(0, σ2)

It is read as εi is identically and independently distributed according
to a normal distribution with mean 0 and variance σ2
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Maximum Likelihood Principle

The method of maximum likelihood chooses as estimates those values of
the parameters that are most consistent with the sample data.
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Likelihood Function

If
Xi ∼ F (Θ), i = 1 . . . n

then the likelihood function is

L({Xi}ni=1,Θ) =
n∏

i=1

F (Xi ; Θ)
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Maximum Likelihood Estimation

The likelihood function can be maximized w.r.t. the parameter(s) Θ,
doing this one can arrive at estimators for parameters as well.

L({Xi}ni=1,Θ) =
n∏

i=1

F (Xi ; Θ)

To do this, find solutions to (analytically or by following gradient)

dL({Xi}ni=1,Θ)

dΘ
= 0
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Important Trick

(almost) Never maximize the likelihood function, maximize the log
likelihood function instead.

log(L({Xi}ni=1,Θ)) = log(
n∏

i=1

F (Xi ; Θ))

=
n∑

i=1

log(F (Xi ; Θ))

Usually the log of the likelihood is easier to work with mathematically.
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ML Normal Regression

Likelihood function

L(β0, β1, σ
2) =

n∏
i=1

1

(2πσ2)1/2
e−

1
2σ2 (Yi−β0−β1Xi )

2

=
1

(2πσ2)n/2
e−

1
2σ2

∑n
i=1(Yi−β0−β1Xi )

2

which if you maximize (how?) w.r.t. to the parameters you get. . .
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Maximum Likelihood Estimator(s)

β0
b0 same as in least squares case

β1
b1 same as in least squares case

σ2

σ̂2 =

∑
i (Yi − Ŷi )

2

n

Note that ML estimator is biased as s2 is unbiased and

s2 = MSE =
n

n − 2
σ̂2

Yang Feng (Columbia University) Introduction to Simple Linear Regression 69 / 70



Comments

Least squares minimizes the squared error between the prediction and
the true output

The normal distribution is fully characterized by its first two central
moments (mean and variance)
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