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Multiple regression

One of the most widely used tools in statistical analysis

Matrix expressions for multiple regression are the same as for simple
linear regression
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Need for Several Predictor Variables

Often the response is best understood as being a function of multiple
input quantities

Examples

Spam filtering-regress the probability of an email being a spam message
against thousands of input variables
Revenue prediction - regress the revenue of a company against a lot of
factors
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First-Order with Two Predictor Variables

When there are two predictor variables X1 and X2 the regression
model

Yi = β0 + β1Xi1 + β2Xi2 + εi

is called a first-order model with two predictor variables.

A first order model is linear in the predictor variables.

Xi1 and Xi2 are the values of the two predictor variables in the i th

trial.
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Functional Form of Regression Surface

Assuming noise equal to zero in expectation

E(Y ) = β0 + β1X1 + β2X2

The form of this regression function is of a plane

e.g. E(Y ) = 10 + 2X1 + 5X2
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Example
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Meaning of Regression Coefficients

β0 is the intercept when both X1 and X2 are zero;

β1 indicates the change in the mean response E(Y ) per unit increase
in X1 when X2 is held constant

β2 -vice versa

Example: fix X2 = 2

E(Y ) = 10 + 2X1 + 5(2) = 20 + 2X1 X2 = 2

intercept changes but clearly linear

In other words, all one dimensional restrictions of the regression
surface are lines.
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Terminology

1 When the effect of X1 on the mean response does not depend on the
level X2 (and vice versa) the two predictor variables are said to have
additive effects or not to interact.

2 The parameters β1 and β2 are sometimes called partial regression
coefficients. They represents the partial effect of one predictor
variable when the other predictor variable is included in the model
and is held constant.

Yang Feng (Columbia University) Multiple Regression 8 / 41



Comments

1 A planar response surface may not always be appropriate, but even
when not it is often a good approximate descriptor of the regression
function in “local” regions of the input space

2 The meaning of the parameters can be determined by taking partials
of the regression function w.r.t. to each.
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First order model with > 2 predictor variables

Let there be p − 1 predictor variables, then

Yi = β0 + β1Xi1 + β2Xi2 + ...+ βp−1Xi ,p−1 + εi

which can also be written as

Yi = β0 +

p−1∑
k=1

βkXik + εi

and if Xi0 = 1 is also can be written as

Yi =

p−1∑
k=0

βkXik + εi

where Xi0 = 1
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Geometry of response surface

In this setting the response surface is a hyperplane

This is difficult to visualize but the same intuitions hold

Fixing all but one input variables, each βp tells how much the response
variable will grow or decrease according to that one input variable
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General Linear Regression Model

We have arrived at the general regression model. In general the
X1, ...,Xp−1 variables in the regression model do not have to represent
different predictor variables, nor do they have to all be
quantitative(continuous).

The general model is

Yi =

p−1∑
k=0

βkXik + εi where Xi0 = 1

with response function when E(εi )=0 is

E(Y ) = β0 + β1X1 + ...+ βp−1Xp−1
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Qualitative(Discrete) Predictor Variables

Until now we have (implicitly) focused on quantitative (continuous)
predictor variables.

Qualitative(discrete) predictor variables often arise in the real world.

Examples:

Patient sex: male/female

College Degree: yes/no

Etc
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Example

Regression model to predict the length of hospital stay(Y) based on the
age (X1) and gender(X2) of the patient. Define gender as:

X2 =
{ 1 if patient female

0 if patient male

And use the standard first-order regression model

Yi = β0 + β1Xi1 + β2Xi2 + εi
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Example cont.

Where Xi1 is patient’s age, and Xi2 is patient’s gender

If X2 = 0, the response function is E (Y ) = β0 + β1X1

Otherwise, it’s E (Y ) = (β0 + β2) + β1X1

Which is just another parallel linear response function with a different
intercept
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Polynomial Regression

Polynomial regression models are special cases of the general
regression model.

They can contain squared and higher-order terms of the predictor
variables

The response function becomes curvilinear.

For example Yi = β0 + β1Xi + β2X
2
i + εi

which clearly has the same form as the general regression model.
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General Regression

Transformed variables
logY , 1/Y

Interaction effects
Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

Combinations
Yi = β0 + β1Xi1 + β2X

2
i1 + β3Xi2 + β4Xi1Xi2 + εi

Key point-all linear in parameters!
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General Regression Model in Matrix Terms

Y =


Y1

.

.

.
Yn


n×1

X =

 1 X11 X12 ... X1,p−1
...
1 Xn1 Xn2 ... Xn,p−1


n×p

β =


β0
.
.
.

βp−1


p×1

ε =


ε1
.
.
.
εn


n×1
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General Linear Regression in Matrix Terms

Y = Xβ + ε

With E (ε) = 0 and

σ2{ε} =


σ2 0 ... 0
0 σ2 ... 0
...
0 0 ... σ2


We have E (Y) = Xβ and σ2{Y} = σ2{ε} = σ2I
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Least Square Solution

The matrix normal equations can be derived directly from the
minimization of

Q(b) = (Y − Xb)′(Y − Xb)

w.r.t. to b

Key result

∂Xb

∂b
= X. (1)
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Least Square Solution

We can solve this equation

X′Xb = X′Y

(if the inverse of X′X exists) by the following

(X′X)−1X′Xb = (X′X)−1X′Y

and since
(X′X)−1X′X = I

we have
b = (X′X)−1X′Y
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Fitted Values and Residuals

Let the vector of the fitted values are

Ŷ =



Ŷ1

Ŷ2

.

.

.

Ŷn


in matrix notation we then have Ŷ = Xb
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Hat Matrix-Puts hat on y

We can also directly express the fitted values in terms of X and Y matrices

Ŷ = X(X′X)−1X′Y

and we can further define H, the “hat matrix”

Ŷ = HY H = X(X′X)−1X′

The hat matrix plans an important role in diagnostics for regression
analysis.
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Hat Matrix Properties

1. the hat matrix is symmetric
2. the hat matrix is idempotent, i.e. HH = H

Important idempotent matrix property

For a symmetric and idempotent matrix A, rank(A) = trace(A), the
number of non-zero eigenvalues of A.
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Residuals

The residuals, like the fitted value Ŷ can be expressed as linear
combinations of the response variable observations Yi

e = Y − Ŷ = Y −HY = (I−H)Y

also, remember

e = Y − Ŷ = Y − Xb

these are equivalent.
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Covariance of Residuals

Starting with
e = (I−H)Y

we see that
σ2{e} = (I−H)σ2{Y}(I−H)′

but
σ2{Y} = σ2{ε} = σ2I

which means that

σ2{e} = σ2(I−H)I(I−H) = σ2(I−H)(I−H)

and since I−H is idempotent (check) we have σ2{e} = σ2(I−H)
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Quadratic Forms

In general, a quadratic form is defined by

Y′AY =
∑

i

∑
j aijYiYj where aij = aji

with A the matrix of the quadratic form.

The ANOVA sums SSTO,SSE and SSR can all be arranged into
quadratic forms.

SSTO = Y′(I− 1

n
J)Y

SSE = Y′(I−H)Y

SSR = Y′(H− 1

n
J)Y
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Quadratic Forms

Cochran’s Theorem

Let X1,X2, . . . ,Xn be independent, N(0, σ2)-distributed random variables,
and suppose that

n∑
i=1

X 2
i = Q1 + Q2 + . . .+ Qk ,

where Q1,Q2, . . . ,Qk are nonnegative-definite quadratic forms in the
random variables X1,X2, . . . ,Xn, with rank(Ai ) = ri , i = 1, 2, . . . , k .
namely,

Qi = X′AiX, i = 1, 2, . . . , k .

If r1 + r2 + . . .+ rk = n, then

1 Q1,Q2, . . . ,Qk are independent; and

2 Qi ∼ σ2χ2(ri ), i = 1, 2, . . . , k
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ANOVA table for multiple linear regression

Source of Variation SS df MS E(MS)

Regression SSR p − 1 MSR = SSR/(p − 1) > σ2

Error SSE n − p MSE = SSE/(n − p) σ2

Total SSTO =
∑

(Yi − Ȳ )2 n − 1
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F-test for regression

H0 : β1 = β2 = · · · = βp−1 = 0

Ha: no all βk , (k = 1, · · · , p − 1) equal zero

Test statistic:

F ∗ =
MSR

MSE

Decision Rule:

if F ∗ ≤ F (1− α; p − 1, n − p), conclude H0

if F ∗ > F (1− α; p − 1, n − p), conclude Ha
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R2 and adjusted R2

The coefficient of multiple determination R2 is defined as:

R2 =
SSR

SSTO
= 1− SSE

SSTO

0 ≤ R2 ≤ 1

R2 always increases when there are more variables.

Therefore, adjusted R2:

R2
a = 1−

SSE
n−p
SSTO
n−1

= 1−
(
n − 1

n − p

)
SSE

SSTO

R2
a may decrease when p is large.

Coefficient of multiple correlation:

R =
√
R2

Always positive square root!
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Inferences about parameters

We have
b = (X′X)−1X′Y

Since σ2{Y} = σ2I we can write

σ2{b} = (X′X)−1X′σ2IX(X′X)−1

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1I

= σ2(X′X)−1

Also

E(b) = E((X′X)−1X′Y) = (X′X)−1X′ E(Y) = (X′X)−1X′Xβ = β
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Inferences

The estimated variance-covariance matrix

s2{b} = MSE (X′X)−1

Then, we have

bk − βk
s{bk}

∼ t(n − p), k = 0, 1, · · · , p − 1

1− α confidence intervals:

bk ± t(1− α/2; n − p)s{bk}
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t test

Tests for βk :

H0 : βk = 0
H1 : βk 6= 0

Test Statistic:

t∗ =
bk

s{bk}
Decision Rule:

|t∗| ≤ t(1− α/2; n − p); conclude H0

Otherwise, conclude Ha
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Joint Inferences

Bonferroni Joint Confidence Intervals for g parameters, the confidence
limits with family confidence coefficient 1− α are

bk ± Bs{bk},

where
B = t(1− α/(2g); n − p)
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Interval estimate of EYh

We want to estimate the response at Xh = (1,Xh1, · · · ,Xh,p−1)′.

Estimator: Ŷh = X′hb

Expectation EŶh = X′hβ = EYh

Variance σ2{Ŷh} = σ2X′h(X′X)−1Xh

Estimated Variance s2{Ŷh} = MSE (X′h(X′X)−1Xh)

1− α confidence limits for EYh:

Ŷh ± t(1− α/2; n − p)s{Ŷh}
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Confidence Region for Regression Surface and Prediction
of New Observations

Working-Hotelling confidence band:

Ŷh ±Ws{Ŷh}

where W 2 = pF (1− α; p, n − p)

Prediction of New Observation Yh(new):

Ŷh ± t(1− α/2; n − p)s{pred}

where s2{pred} = MSE + s2{Ŷ 2
h } = MSE (1 + X′h(X′X)−1Xh).
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Diagnostics and Remedial Measures

Very similar to simple linear regression.

Only mention the difference.
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Scatter Plot Matrix

It is a matrix of scatter plot! R code: pairs(data)
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Correlation Matrix

Corresponds to the scatter plot matrix

R code: cor(data)

Population Income Sales

Population 1.00 0.78 0.94
Income 0.78 1.00 0.84

Sales 0.94 0.84 1.00
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Other Diagnostics and Remedial Measures (Read after
class)

Residual Plots.

Against time (or some other sequence) for error dependency.
Against each X variable for potential nonlinear relationship and
nonconstancy of error variances.
Against omitted variables (including the interaction terms). More on
interaction terms in next Chapter.

Correlation Test for Normality (Same, since it is on the residuals)

Brown-Forsythe Test for Constancy of Error Variance (Need to find a
way to divide the X space)

Breusch-Pagan Test for Constancy of Error Variance (Same)

F Test for Lack of Fit (Need to have (near) replicates on all
dimension of X)

Box-Cox Transformations (Same, since it is on Y )
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