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Definition of Matrix

Rectangular array of elements arranged in rows and columns16000 23
33000 47
21000 35


A matrix has dimensions

The dimension of a matrix is its number of rows and columns

It is expressed as 3× 2 (in this case)
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Indexing a Matrix

Rectangular array of elements arranged in rows and columns

A =

[
a11 a12 a13
a21 a22 a23

]
A matrix can also be notated

A = [aij ], i = 1, 2; j = 1, 2, 3
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Square Matrix and Column Vector

A square matrix has equal number of rows and columns

[
4 7
3 9

] a11 a12 a13
a21 a22 a23
a31 a32 a33


A column vector is a matrix with a single column

 4
7

10



c1
c2
c3
c4
c5


All vectors (row or column) are matrices, all scalars are 1× 1 matrices.
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Transpose

The transpose of a matrix is another matrix in which the rows and
columns have been interchanged

A =

2 5
7 10
3 4


A′ =

[
2 7 3
5 10 4

]
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Equality of Matrices

Two matrices are the same if they have the same dimension and all
the elements are equal

A =

a1a2
a3

 B =

4
7
3


A = B implies a1 = 4, a2 = 7, a3 = 3
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Matrix Addition and Substraction

A =

1 4
2 5
3 6

 B =

1 2
2 3
3 4


Then

A + B =

2 6
4 8
6 10
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Multiplication of a Matrix by a Scalar

A =

[
2 7
9 3

]
kA = k

[
2 7
9 3

]
=

[
2k 7k
9k 3k

]
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Multiplication of two Matrices
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Another Matrix Multiplication Example

A =

[
1 3 4
0 5 8

]
B =

3
5
2


AB =

[
1 3 4
0 5 8

]3
5
2

 =

[
26
41

]
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Special Matrices

If A = A′, then A is a symmetric matrix

A =

1 4 6
4 2 5
6 5 3

 A′ =

1 4 6
4 2 5
6 5 3


If the off-diagonal elements of a matrix are all zeros it is then called a
diagonal matrix

A =

a1 0 0
0 a2 0
0 0 a3

 B =


4 0 0 0
0 1 0 0
0 0 10 0
0 0 0 5
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Identity Matrix

A diagonal matrix whose diagonal entries are all ones is an identity matrix.
Multiplication by an identity matrix leaves the pre or post multiplied
matrix unchanged.

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and

AI = IA = A
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Vector and matrix with all elements equal to one

1 =



1
1
.
.
.
1

 J =


1 ... 1
. . .
. . .
. . .
1 ... 1



11′ =



1
1
.
.
.
1


[
1 1 . . . 1

]
=


1 ... 1
. . .
. . .
. . .
1 ... 1

 = J
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Linear Dependence and Rank of Matrix

Consider

A =

1 2 5 1
2 2 10 6
3 4 15 1


and think of this as a matrix of a collection of column vectors.

Note that the third column vector is a multiple of the first column vector.
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Linear Dependence

When m scalars k1, ..., km not all zero, can be found such that:

k1A1 + ...+ kmAm = 0

where 0 denotes the zero column vector and Ai is the i th column of matrix
A, the m column vectors are called linearly dependent. If the only set of
scalars for which the equality holds is k1 = 0, ..., km = 0, the set of m
column vectors is linearly independent.

In the previous example matrix the columns are linearly dependent.

5

1
2
3

+ 0

2
2
4

− 1

 5
10
15

+ 0

1
6
1

 =

0
0
0
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Rank of Matrix

The rank of a matrix is defined to be the maximum number of linearly
independent columns in the matrix. Rank properties include

The rank of a matrix is unique

The rank of a matrix can equivalently be defined as the maximum
number of linearly independent rows

The rank of an r × c matrix cannot exceed min(r , c)

The row and column rank of a matrix are equal

The rank of a matrix is preserved under nonsingular transformations.,
i.e. Let A (n × n) and C (k × k) be nonsingular matrices. Then for
any n × k matrix B we have

rank(B) = rank(AB) = rank(BC)
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Inverse of Matrix

Like a reciprocal

6 ∗ 1/6 = 1/6 ∗ 6 = 1

x
1

x
= 1

But for matrices

AA−1 = A−1A = I
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Example

A =

[
2 4
3 1

]

A−1 =

[
−.1 .4
.3 −.2

]
A−1A =

[
1 0
0 1

]
More generally,

A =

[
a b
c d

]

A−1 =
1

D

[
d −b
−c a

]
where D = ad − bc
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Inverses of Diagonal Matrices are Easy

A =

3 0 0
0 4 0
0 0 2


then

A−1 =

1/3 0 0
0 1/4 0
0 0 1/2
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Finding the inverse

Finding an inverse takes (for general matrices with no special
structure)

O(n3)

operations (when n is the number of rows in the matrix)

We will assume that numerical packages can do this for us
in R: solve(A) gives the inverse of matrix A
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Uses of Inverse Matrix

Ordinary algebra 5y = 20
is solved by 1/5 ∗ (5y) = 1/5 ∗ (20)

Linear algebra AY = C
is solved by

A−1AY = A−1C,Y = A−1C
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Example

Solving a system of simultaneous equations

2y1 + 4y2 = 20
3y1 + y2 = 10[

2 4
3 1

] [
y1
y2

]
=

[
20
10

]
[
y1
y2

]
=

[
2 4
3 1

]−1 [
20
10

]
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List of Useful Matrix Properties

A + B = B + A

(A + B) + C = A + (B + C)

(AB)C = A(BC)

C(A + B) = CA + CB

k(A + B) = kA + kB

(A′)′ = A

(A + B)′ = A′ + B′

(AB)′ = B′A′

(ABC)′ = C′B′A′

(AB)−1 = B−1A−1

(ABC)−1 = C−1B−1A−1

(A−1)−1 = A, (A′)−1 = (A−1)′
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Random Vectors and Matrices

Let’s say we have a vector consisting of three random variables

Y =

Y1

Y2

Y3


The expectation of a random vector is defined as

E(Y) =

E(Y1)
E(Y2)
E(Y3)
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Expectation of a Random Matrix

The expectation of a random matrix is defined similarly

E(Y) = [E(Yij)] i = 1, ...n; j = 1, ..., p

Yang Feng (Columbia University) Linear Algebra Review 25 / 46



Variance-covariance Matrix of a Random Vector

The variances of three random variables σ2(Yi ) and the covariances
between any two of the three random variables σ(Yi ,Yj), are assembled in
the variance-covariance matrix of Y

cov(Y) = σ2{Y} =

 σ2(Y1) σ(Y1,Y2) σ(Y1,Y3)
σ(Y2,Y1) σ2(Y2) σ(Y2,Y3)
σ(Y3,Y1) σ(Y3,Y2) σ2(Y3)


remember σ(Y2,Y1) = σ(Y1,Y2) so the covariance matrix is symmetric
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Derivation of Covariance Matrix

In vector terms the variance-covariance matrix is defined by

σ2{Y} = E(Y − E(Y))(Y − E(Y))′

because

σ2{Y} = E(

Y1 − E(Y1)
Y2 − E(Y2)
Y3 − E(Y3)

(Y1 − E(Y1) Y2 − E(Y2) Y3 − E(Y3)
)
)
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Regression Example

Take a regression example with n = 3 with constant error terms
σ2(εi ) and are uncorrelated so that σ2(εi , εj) = 0 for all i 6= j

The variance-covariance matrix for the random vector ε is

σ2(ε) =

σ2 0 0
0 σ2 0
0 0 σ2


which can be written as σ2{ε} = σ2 I
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Basic Results

If A is a constant matrix and Y is a random matrix then W = AY
is a random matrix

E(A) = A
E(W) = E(AY) = AE(Y)

σ2{W} = σ2{AY} = Aσ2{Y}A′

Yang Feng (Columbia University) Linear Algebra Review 29 / 46



Multivariate Normal Density

Let Y be a vector of p observations

Y =



Y1

Y2

.

.

.
Yp


Let µ be a vector of the means of each of the p observations

µ =



µ1
µ2
.
.
.
µp
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Multivariate Normal Density

let Σ be the variance-covariance matrix of Y

Σ =



σ21 σ12 ... σ1p
σ21 σ22 ... σ2p
.
.
.
σp1 σp2 ... σ2p


Then the multivariate normal density is given by

P(Y|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp[−1

2
(Y − µ)′Σ−1(Y − µ)]
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Matrix Simple Linear Regression

Nothing new-only matrix formalism for previous results

Remember the normal error regression model

Yi = β0 + β1Xi + εi , εi ∼ N(0, σ2), i = 1, ..., n

Expanded out this looks like

Y1 = β0 + β1X1 + ε1
Y2 = β0 + β1X2 + ε2

...
Yn = β0 + β1Xn + εn

which points towards an obvious matrix formulation.
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Regression Matrices

If we identify the following matrices

Y =



Y1

Y2

.

.

.
Yn

 X =



1 X1

1 X2

.

.

.
1 Xn

 β =

(
β0
β1

)
ε =



ε1
ε2
.
.
.
εn


We can write the linear regression equations in a compact form

Y = Xβ + ε
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Regression Matrices

Of course, in the normal regression model the expected value of each
of the ε’s is zero, we can write E(Y) = Xβ

This is because

E(ε) = 0

E(ε1)
E(ε2)
.
.
.

E(εn)

 =



0
0
.
.
.
0
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Error Covariance

Because the error terms are independent and have constant variance σ2

σ2{ε} =


σ2 0 ... 0
0 σ2 ... 0
...
0 0 ... σ2


σ2{ε} = σ2I
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Matrix Normal Regression Model

In matrix terms the normal regression model can be written as

Y = Xβ + ε

where ε ∼ N(0, σ2I)
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Least Square Estimation

If we remember both the starting normal equations that we derived

nb0 + b1
∑

Xi =
∑

Yi

b0
∑

Xi + b1
∑

X 2
i =

∑
XiYi

and the fact that

X′X =

[
1 1 ... 1
X1 X2 ... Xn

]
1 X1

1 X2

. .

. .
1 Xn

 =

[
n

∑
Xi∑

Xi
∑

X 2
i

]

X′Y =

[
1 1 ... 1
X1 X2 ... Xn

]
Y1

Y2

.

.
Yn

 =

[ ∑
Yi∑
XiYi

]
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Least Square Estimation

Then we can see that these equations are equivalent to the following
matrix operations

X′X b = X′Y

with

b =

(
b0
b1

)
with the solution to this equation given by

b = (X′X)−1X′Y

when (X′X)−1 exists.
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Fitted Value

Ŷ = Xb
Because:

Ŷ =



Ŷ1

Ŷ2

.

.

.

Ŷn


=



1 X1

1 X2

. .

. .

. .
1 Xn


(
b0
b1

)
=



b0 + b1X1

b0 + b1X2

.

.

.
b0 + b1Xn
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Fitted Values, Hat Matrix

plug in
b = (X′X)−1X′Y

We have

Ŷ = Xb = X(X′X)−1X′Y

or
Ŷ = HY

where
H = X(X′X)−1X′

is called the hat matrix.
Property of hat matrix H:

1 symmetric

2 idempotent: HH = H.
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Residuals

e = Y − Ŷ = Y −HY = (I−H)Y

Then
e = (I−H)Y

The matrix I−H is also symmetric and idempotent.
The variance-covariance matrix of e is

σ2{e} = σ2(I−H)

And we can estimate it by

s2{e} = MSE (I−H)
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Analysis of Variance Results

SSTO =
∑

(Yi − Ȳ )2 =
∑

Y 2
i −

(
∑

Yi )
2

n

We know
Y′Y =

∑
Y 2
i

and J is the matrix with entries all equal to 1. Then we have

(
∑

Yi )
2

n
=

1

n
Y′JY

As a result:

SSTO = Y′Y − 1

n
Y′JY
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Analysis of Variance Results

Also,
SSE =

∑
e2i =

∑
(Yi − Ŷi )

2

can be represented as

SSE = e′e = Y′(I−H)′(I−H)Y = Y′(I−H)Y

Notice that H1 = 1, then (I−H)J = 0
Finally by similarly reasoning,

SSR = ([H− 1

n
J]Y)′([H− 1

n
J]Y) = Y′[H− 1

n
J]Y

Easy to check that
SSTO = SSE + SSR
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Sums of Squares as Quadratic Forms

When n = 2, an example of quadratic forms:

5Y 2
1 + 6Y1Y2 + 4Y 2

2

can be expressed as matrix term as

(
Y1 Y2

)(5 3
3 4

)(
Y1

Y2

)
= Y′AY

In general, a quadratic term is defined as :

Y′AY =
n∑

i=1

n∑
j=1

AijYiYj

where Aij = Aji

Here, A is a symmetric n × n matrix , the matrix of the quadratic form.
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Quadratic forms for ANOVA

SSTO = Y′[I− 1

n
J]Y

SSE = Y′[I−H]Y

SSR = Y′[H− 1

n
J]Y
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Inference in Regression Analysis

Regression Coefficients: The variance-covariance matrix of b is

σ2{b} = σ2(X′X)−1

Mean Response: To estimate the mean response at Xh, define

Xh =

(
1
Xh

)
Then

Ŷh = X′hb

And the variance-covariance matrix of Ŷh is

σ2{Ŷh} = X′hσ
2{b}Xh = σ2X′h(X′X)−1Xh

Prediction of New Observation:

s2{pred} = MSE (1 + X′h(X′X)−1Xh)
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