Linear Algebra Review

Yang Feng

Definition of Matrix

- Rectangular array of elements arranged in rows and columns

$$
\left[\begin{array}{ll}
16000 & 23 \\
33000 & 47 \\
21000 & 35
\end{array}\right]
$$

- A matrix has dimensions
- The dimension of a matrix is its number of rows and columns
- It is expressed as 3×2 (in this case)

Indexing a Matrix

- Rectangular array of elements arranged in rows and columns

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

- A matrix can also be notated

$$
\mathbf{A}=\left[a_{i j}\right], i=1,2 ; j=1,2,3
$$

Square Matrix and Column Vector

- A square matrix has equal number of rows and columns

$$
\left[\begin{array}{ll}
4 & 7 \\
3 & 9
\end{array}\right] \quad\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

- A column vector is a matrix with a single column

$$
\left[\begin{array}{c}
4 \\
7 \\
10
\end{array}\right] \quad\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right]
$$

- All vectors (row or column) are matrices, all scalars are 1×1 matrices.

Transpose

- The transpose of a matrix is another matrix in which the rows and columns have been interchanged

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{cc}
2 & 5 \\
7 & 10 \\
3 & 4
\end{array}\right] \\
\mathbf{A}^{\prime} & =\left[\begin{array}{ccc}
2 & 7 & 3 \\
5 & 10 & 4
\end{array}\right]
\end{aligned}
$$

Equality of Matrices

- Two matrices are the same if they have the same dimension and all the elements are equal

$$
\mathbf{A}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{l}
4 \\
7 \\
3
\end{array}\right]
$$

$\mathbf{A}=\mathbf{B}$ implies $a_{1}=4, a_{2}=7, a_{3}=3$

Matrix Addition and Substraction

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3 \\
3 & 4
\end{array}\right]
$$

Then

$$
\mathbf{A}+\mathbf{B}=\left[\begin{array}{cc}
2 & 6 \\
4 & 8 \\
6 & 10
\end{array}\right]
$$

Multiplication of a Matrix by a Scalar

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
2 & 7 \\
9 & 3
\end{array}\right] \\
k \mathbf{A}=k\left[\begin{array}{ll}
2 & 7 \\
9 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 k & 7 k \\
9 k & 3 k
\end{array}\right]
\end{gathered}
$$

Multiplication of two Matrices

$$
\underset{2 \times 2}{\mathbf{A}}=\left[\begin{array}{ll}
2 & 5 \\
4 & 1
\end{array}\right] \quad \underset{2 \times 2}{\mathbf{B}}=\left[\begin{array}{ll}
4 & 6 \\
5 & 8
\end{array}\right]
$$

Another Matrix Multiplication Example

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
1 & 3 & 4 \\
0 & 5 & 8
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{l}
3 \\
5 \\
2
\end{array}\right] \\
& \mathbf{A B}=\left[\begin{array}{lll}
1 & 3 & 4 \\
0 & 5 & 8
\end{array}\right]\left[\begin{array}{l}
3 \\
5 \\
2
\end{array}\right]=\left[\begin{array}{l}
26 \\
41
\end{array}\right]
\end{aligned}
$$

Special Matrices

- If $\mathbf{A}=\mathbf{A}^{\prime}$, then \mathbf{A} is a symmetric matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 4 & 6 \\
4 & 2 & 5 \\
6 & 5 & 3
\end{array}\right] \quad \mathbf{A}^{\prime}=\left[\begin{array}{lll}
1 & 4 & 6 \\
4 & 2 & 5 \\
6 & 5 & 3
\end{array}\right]
$$

- If the off-diagonal elements of a matrix are all zeros it is then called a diagonal matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

Identity Matrix

A diagonal matrix whose diagonal entries are all ones is an identity matrix. Multiplication by an identity matrix leaves the pre or post multiplied matrix unchanged.

$$
\mathbf{I}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
\mathbf{A} \mathbf{I}=\mathbf{I} \mathbf{A}=\mathbf{A}
$$

Vector and matrix with all elements equal to one

$$
\begin{gathered}
\mathbf{1}=\left[\begin{array}{l}
1 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right] \quad \mathbf{J}=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
. & \cdot & \cdot \\
1 & \ldots & 1
\end{array}\right] \\
\mathbf{1 1}^{\prime}=\left[\begin{array}{l}
1 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right]\left[\begin{array}{lllll}
1 & 1 & \cdot & .
\end{array}\right]=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
. & \cdot & \cdot \\
1 & \ldots & 1
\end{array}\right]=\mathbf{J}
\end{gathered}
$$

Linear Dependence and Rank of Matrix

Consider

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 2 & 5 & 1 \\
2 & 2 & 10 & 6 \\
3 & 4 & 15 & 1
\end{array}\right]
$$

and think of this as a matrix of a collection of column vectors.

Note that the third column vector is a multiple of the first column vector.

Linear Dependence

When m scalars k_{1}, \ldots, k_{m} not all zero, can be found such that:

$$
k_{1} \mathbf{A}_{1}+\ldots+k_{m} \mathbf{A}_{m}=\mathbf{0}
$$

where $\mathbf{0}$ denotes the zero column vector and \mathbf{A}_{i} is the $i^{\text {th }}$ column of matrix A, the m column vectors are called linearly dependent. If the only set of scalars for which the equality holds is $k_{1}=0, \ldots, k_{m}=0$, the set of m column vectors is linearly independent.

In the previous example matrix the columns are linearly dependent.

$$
5\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+0\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]-1\left[\begin{array}{c}
5 \\
10 \\
15
\end{array}\right]+0\left[\begin{array}{l}
1 \\
6 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Rank of Matrix

The rank of a matrix is defined to be the maximum number of linearly independent columns in the matrix. Rank properties include

- The rank of a matrix is unique
- The rank of a matrix can equivalently be defined as the maximum number of linearly independent rows
- The rank of an $r \times c$ matrix cannot exceed $\min (r, c)$
- The row and column rank of a matrix are equal
- The rank of a matrix is preserved under nonsingular transformations., i.e. Let $\mathbf{A}(n \times n)$ and $\mathbf{C}(k \times k)$ be nonsingular matrices. Then for any $n \times k$ matrix \mathbf{B} we have

$$
\operatorname{rank}(\mathbf{B})=\operatorname{rank}(\mathbf{A B})=\operatorname{rank}(\mathbf{B C})
$$

Inverse of Matrix

- Like a reciprocal

$$
\begin{gathered}
6 * 1 / 6=1 / 6 * 6=1 \\
x \frac{1}{x}=1
\end{gathered}
$$

- But for matrices

$$
\mathbf{A A}^{-\mathbf{1}}=\mathbf{A}^{-\mathbf{1}} \mathbf{A}=\mathbf{I}
$$

Example

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right] \\
\mathbf{A}^{-\mathbf{1}}=\left[\begin{array}{cc}
-.1 & .4 \\
.3 & -.2
\end{array}\right] \\
\mathbf{A}^{-\mathbf{1}} \mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

More generally,

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
\mathbf{A}^{-1}=\frac{1}{D}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\end{gathered}
$$

where $D=a d-b c$

Inverses of Diagonal Matrices are Easy

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

then

$$
\mathbf{A}^{-\mathbf{1}}=\left[\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 2
\end{array}\right]
$$

Finding the inverse

- Finding an inverse takes (for general matrices with no special structure)

$$
O\left(n^{3}\right)
$$

operations (when n is the number of rows in the matrix)

- We will assume that numerical packages can do this for us in R : solve (\mathbf{A}) gives the inverse of matrix \mathbf{A}

Uses of Inverse Matrix

- Ordinary algebra $5 y=20$ is solved by $1 / 5 *(5 y)=1 / 5 *(20)$
- Linear algebra $\mathbf{A Y}=\mathbf{C}$ is solved by

$$
\mathbf{A}^{-1} \mathbf{A} \mathbf{Y}=\mathbf{A}^{-1} \mathbf{C}, \mathbf{Y}=\mathbf{A}^{-1} \mathbf{C}
$$

Example

Solving a system of simultaneous equations

$$
\begin{gathered}
2 y_{1}+4 y_{2}=20 \\
3 y_{1}+y_{2}=10 \\
{\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
20 \\
10
\end{array}\right]} \\
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
20 \\
10
\end{array}\right]}
\end{gathered}
$$

List of Useful Matrix Properties

$$
\begin{aligned}
\mathbf{A}+\mathbf{B} & =\mathbf{B}+\mathbf{A} \\
(\mathbf{A}+\mathbf{B})+\mathbf{C} & =\mathbf{A}+(\mathbf{B}+\mathbf{C}) \\
(\mathbf{A B}) \mathbf{C} & =\mathbf{A}(\mathbf{B C}) \\
\mathbf{C}(\mathbf{A}+\mathbf{B}) & =\mathbf{C A}+\mathbf{C B} \\
k(\mathbf{A}+\mathbf{B}) & =k \mathbf{A}+k \mathbf{B} \\
\left(\mathbf{A}^{\prime}\right)^{\prime} & =\mathbf{A} \\
(\mathbf{A}+\mathbf{B})^{\prime} & =\mathbf{A}^{\prime}+\mathbf{B}^{\prime} \\
(\mathbf{A B})^{\prime} & =\mathbf{B}^{\prime} \mathbf{A}^{\prime} \\
(\mathbf{A B C})^{\prime} & =\mathbf{C}^{\prime} \mathbf{B}^{\prime} \mathbf{A}^{\prime} \\
(\mathbf{A B})^{-1} & =\mathbf{B}^{-1} \mathbf{A}^{-1} \\
(\mathbf{A B C})^{-1} & =\mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1} \\
\left(\mathbf{A}^{-1}\right)^{-1} & =\mathbf{A},\left(\mathbf{A}^{\prime}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\prime}
\end{aligned}
$$

Random Vectors and Matrices

Let's say we have a vector consisting of three random variables

$$
\mathbf{Y}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)
$$

The expectation of a random vector is defined as

$$
\mathbb{E}(\mathbf{Y})=\left(\begin{array}{l}
\mathbb{E}\left(Y_{1}\right) \\
\mathbb{E}\left(Y_{2}\right) \\
\mathbb{E}\left(Y_{3}\right)
\end{array}\right)
$$

Expectation of a Random Matrix

The expectation of a random matrix is defined similarly

$$
\mathbb{E}(\mathbf{Y})=\left[\mathbb{E}\left(Y_{i j}\right)\right] \quad i=1, \ldots n ; j=1, \ldots, p
$$

Variance-covariance Matrix of a Random Vector

The variances of three random variables $\sigma^{2}\left(Y_{i}\right)$ and the covariances between any two of the three random variables $\sigma\left(Y_{i}, Y_{j}\right)$, are assembled in the variance-covariance matrix of \mathbf{Y}

$$
\operatorname{cov}(\mathbf{Y})=\sigma^{2}\{\mathbf{Y}\}=\left(\begin{array}{ccc}
\sigma^{2}\left(Y_{1}\right) & \sigma\left(Y_{1}, Y_{2}\right) & \sigma\left(Y_{1}, Y_{3}\right) \\
\sigma\left(Y_{2}, Y_{1}\right) & \sigma^{2}\left(Y_{2}\right) & \sigma\left(Y_{2}, Y_{3}\right) \\
\sigma\left(Y_{3}, Y_{1}\right) & \sigma\left(Y_{3}, Y_{2}\right) & \sigma^{2}\left(Y_{3}\right)
\end{array}\right)
$$

remember $\sigma\left(Y_{2}, Y_{1}\right)=\sigma\left(Y_{1}, Y_{2}\right)$ so the covariance matrix is symmetric

Derivation of Covariance Matrix

In vector terms the variance-covariance matrix is defined by

$$
\sigma^{2}\{\mathbf{Y}\}=\mathbb{E}(\mathbf{Y}-\mathbb{E}(\mathbf{Y}))(\mathbf{Y}-\mathbb{E}(\mathbf{Y}))^{\prime}
$$

because

$$
\sigma^{2}\{\mathbf{Y}\}=\mathbb{E}\left(\left(\begin{array}{l}
Y_{1}-\mathbb{E}\left(Y_{1}\right) \\
Y_{2}-\mathbb{E}\left(Y_{2}\right) \\
Y_{3}-\mathbb{E}\left(Y_{3}\right)
\end{array}\right)\left(Y_{1}-\mathbb{E}\left(Y_{1}\right) \quad Y_{2}-\mathbb{E}\left(Y_{2}\right) \quad Y_{3}-\mathbb{E}\left(Y_{3}\right)\right)\right)
$$

Regression Example

- Take a regression example with $n=3$ with constant error terms $\sigma^{2}\left(\epsilon_{i}\right)$ and are uncorrelated so that $\sigma^{2}\left(\epsilon_{i}, \epsilon_{j}\right)=0$ for all $i \neq j$
- The variance-covariance matrix for the random vector ϵ is

$$
\sigma^{2}(\epsilon)=\left(\begin{array}{ccc}
\sigma^{2} & 0 & 0 \\
0 & \sigma^{2} & 0 \\
0 & 0 & \sigma^{2}
\end{array}\right)
$$

which can be written as $\sigma^{2}\{\epsilon\}=\sigma^{2}$ I

Basic Results

If \mathbf{A} is a constant matrix and \mathbf{Y} is a random matrix then $\mathbf{W}=\mathbf{A} \mathbf{Y}$ is a random matrix

$$
\begin{gathered}
\mathbb{E}(\mathbf{A})=\mathbf{A} \\
\mathbb{E}(\mathbf{W})=\mathbb{E}(\mathbf{A} \mathbf{Y})=\mathbf{A} \mathbb{E}(\mathbf{Y}) \\
\sigma^{2}\{\mathbf{W}\}=\sigma^{2}\{\mathbf{A} \mathbf{Y}\}=\mathbf{A} \sigma^{2}\{\mathbf{Y}\} \mathbf{A}^{\prime}
\end{gathered}
$$

Multivariate Normal Density

- Let \mathbf{Y} be a vector of p observations

$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
\cdot \\
Y_{p}
\end{array}\right)
$$

- Let $\boldsymbol{\mu}$ be a vector of the means of each of the p observations

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\cdot \\
\cdot \\
\cdot \\
\mu_{p}
\end{array}\right)
$$

Multivariate Normal Density

let $\boldsymbol{\Sigma}$ be the variance-covariance matrix of \mathbf{Y}

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \ldots & \sigma_{1 p} \\
\sigma_{21} & \sigma_{2}^{2} & \ldots & \sigma_{2 p} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
\sigma_{p 1} & \sigma_{p 2} & \ldots & \sigma_{p}^{2}
\end{array}\right)
$$

Then the multivariate normal density is given by

$$
P(\mathbf{Y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{Y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{Y}-\boldsymbol{\mu})\right]
$$

Matrix Simple Linear Regression

- Nothing new-only matrix formalism for previous results
- Remember the normal error regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right), \quad i=1, \ldots, n
$$

- Expanded out this looks like

$$
\begin{gathered}
Y_{1}=\beta_{0}+\beta_{1} X_{1}+\epsilon_{1} \\
Y_{2}=\beta_{0}+\beta_{1} X_{2}+\epsilon_{2} \\
\ldots \\
Y_{n}=\beta_{0}+\beta_{1} X_{n}+\epsilon_{n}
\end{gathered}
$$

- which points towards an obvious matrix formulation.

Regression Matrices

- If we identify the following matrices

$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
\cdot \\
Y_{n}
\end{array}\right) \quad \mathbf{X}=\left(\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\cdot & \\
\cdot & \\
\cdot & \\
1 & X_{n}
\end{array}\right) \quad \boldsymbol{\beta}=\binom{\beta_{0}}{\beta_{1}} \boldsymbol{\epsilon}=\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\cdot \\
\cdot \\
\cdot \\
\epsilon_{n}
\end{array}\right)
$$

- We can write the linear regression equations in a compact form

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

Regression Matrices

- Of course, in the normal regression model the expected value of each of the ϵ 's is zero, we can write $\mathbb{E}(\mathbf{Y})=\mathbf{X} \boldsymbol{\beta}$
- This is because

$$
\begin{gathered}
\mathbb{E}(\boldsymbol{\epsilon})=\mathbf{0} \\
\left(\begin{array}{c}
\mathbb{E}\left(\epsilon_{1}\right) \\
\mathbb{E}\left(\epsilon_{2}\right) \\
\cdot \\
\cdot \\
\cdot \\
\mathbb{E}\left(\epsilon_{n}\right)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right)
\end{gathered}
$$

Error Covariance

Because the error terms are independent and have constant variance σ^{2}

$$
\begin{aligned}
& \sigma^{2}\{\boldsymbol{\epsilon}\}=\left(\begin{array}{cccc}
\sigma^{2} & 0 & \ldots & 0 \\
0 & \sigma^{2} & \ldots & 0 \\
\ldots & & & \\
0 & 0 & \ldots & \sigma^{2}
\end{array}\right) \\
& \sigma^{2}\{\boldsymbol{\epsilon}\}=\sigma^{2} \mathbf{l}
\end{aligned}
$$

Matrix Normal Regression Model

In matrix terms the normal regression model can be written as

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where $\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

Least Square Estimation

If we remember both the starting normal equations that we derived

$$
\begin{gathered}
n b_{0}+b_{1} \sum X_{i}=\sum Y_{i} \\
b_{0} \sum X_{i}+b_{1} \sum X_{i}^{2}=\sum X_{i} Y_{i}
\end{gathered}
$$

and the fact that

$$
\begin{gathered}
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
X_{1} & X_{2} & \ldots & X_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
1 & X_{n}
\end{array}\right]=\left[\begin{array}{cc}
n & \sum X_{i} \\
\sum X_{i} & \sum X_{i}^{2}
\end{array}\right] \\
\mathbf{X}^{\prime} \mathbf{Y}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
X_{1} & X_{2} & \ldots & X_{n}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
Y_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum Y_{i} \\
\sum X_{i} Y_{i}
\end{array}\right]
\end{gathered}
$$

Least Square Estimation

Then we can see that these equations are equivalent to the following matrix operations

$$
\mathbf{X}^{\prime} \mathbf{X} \mathbf{b}=\mathbf{X}^{\prime} \mathbf{Y}
$$

with

$$
\mathbf{b}=\binom{b_{0}}{b_{1}}
$$

with the solution to this equation given by

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

when $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ exists.

Fitted Value

$\hat{\mathbf{Y}}=\mathbf{X b}$
Because:

$$
\hat{\mathbf{Y}}=\left(\begin{array}{c}
\hat{Y}_{1} \\
\hat{Y}_{2} \\
\cdot \\
\cdot \\
\cdot \\
\hat{Y}_{n}
\end{array}\right)=\left(\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
1 & X_{n}
\end{array}\right)\binom{b_{0}}{b_{1}}=\left(\begin{array}{c}
b_{0}+b_{1} X_{1} \\
b_{0}+b_{1} X_{2} \\
\cdot \\
\cdot \\
\cdot \\
b_{0}+b_{1} X_{n}
\end{array}\right)
$$

Fitted Values, Hat Matrix

plug in

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

We have

$$
\hat{\mathbf{Y}}=\mathbf{X} \mathbf{b}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

or

$$
\hat{\mathbf{Y}}=\mathbf{H Y}
$$

where

$$
\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}
$$

is called the hat matrix.
Property of hat matrix \mathbf{H} :
(1) symmetric
(2) idempotent: $\mathbf{H H}=\mathbf{H}$.

Residuals

$$
\mathbf{e}=\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{H} \mathbf{Y}=(\mathbf{I}-\mathbf{H}) \mathbf{Y}
$$

Then

$$
\mathbf{e}=(\mathbf{I}-\mathbf{H}) \mathbf{Y}
$$

The matrix $\mathbf{I}-\mathbf{H}$ is also symmetric and idempotent. The variance-covariance matrix of \mathbf{e} is

$$
\sigma^{2}\{\mathbf{e}\}=\sigma^{2}(\mathbf{I}-\mathbf{H})
$$

And we can estimate it by

$$
\mathbf{s}^{2}\{\mathbf{e}\}=M S E(\mathbf{I}-\mathbf{H})
$$

Analysis of Variance Results

$$
S S T O=\sum\left(Y_{i}-\bar{Y}\right)^{2}=\sum Y_{i}^{2}-\frac{\left(\sum Y_{i}\right)^{2}}{n}
$$

We know

$$
\mathbf{Y}^{\prime} \mathbf{Y}=\sum Y_{i}^{2}
$$

and \mathbf{J} is the matrix with entries all equal to 1 . Then we have

$$
\frac{\left(\sum Y_{i}\right)^{2}}{n}=\frac{1}{n} \mathbf{Y}^{\prime} \mathbf{J} \mathbf{Y}
$$

As a result:

$$
\text { SSTO }=\mathbf{Y}^{\prime} \mathbf{Y}-\frac{1}{n} \mathbf{Y}^{\prime} \mathbf{J} \mathbf{Y}
$$

Analysis of Variance Results

Also,

$$
S S E=\sum e_{i}^{2}=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

can be represented as

$$
S S E=\mathbf{e}^{\prime} \mathbf{e}=\mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{H})^{\prime}(\mathbf{I}-\mathbf{H}) \mathbf{Y}=\mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{H}) \mathbf{Y}
$$

Notice that $\mathbf{H 1}=\mathbf{1}$, then $(\mathbf{I}-\mathbf{H}) \mathbf{J}=\mathbf{0}$
Finally by similarly reasoning,

$$
S S R=\left(\left[\mathbf{H}-\frac{1}{n} \mathbf{J}\right] \mathbf{Y}\right)^{\prime}\left(\left[\mathbf{H}-\frac{1}{n} \mathbf{J}\right] \mathbf{Y}\right)=\mathbf{Y}^{\prime}\left[\mathbf{H}-\frac{1}{n} \mathbf{J}\right] \mathbf{Y}
$$

Easy to check that

$$
S S T O=S S E+S S R
$$

Sums of Squares as Quadratic Forms

When $n=2$, an example of quadratic forms:

$$
5 Y_{1}^{2}+6 Y_{1} Y_{2}+4 Y_{2}^{2}
$$

can be expressed as matrix term as

$$
\left(\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right)\left(\begin{array}{ll}
5 & 3 \\
3 & 4
\end{array}\right)\binom{Y_{1}}{Y_{2}}=\mathbf{Y}^{\prime} \mathbf{A} \mathbf{Y}
$$

In general, a quadratic term is defined as:

$$
\mathbf{Y}^{\prime} \mathbf{A} \mathbf{Y}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} Y_{i} Y_{j}
$$

where $A_{i j}=A_{j i}$
Here, \mathbf{A} is a symmetric $n \times n$ matrix, the matrix of the quadratic form.

Quadratic forms for ANOVA

$$
\begin{gathered}
\text { SSTO }=\mathbf{Y}^{\prime}\left[\mathbf{I}-\frac{1}{n} \mathbf{J}\right] \mathbf{Y} \\
\text { SSE }=\mathbf{Y}^{\prime}[\mathbf{I}-\mathbf{H}] \mathbf{Y} \\
\text { SSR }=\mathbf{Y}^{\prime}\left[\mathbf{H}-\frac{1}{n} \mathbf{J}\right] \mathbf{Y}
\end{gathered}
$$

Inference in Regression Analysis

- Regression Coefficients: The variance-covariance matrix of \mathbf{b} is

$$
\sigma^{2}\{\mathbf{b}\}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- Mean Response: To estimate the mean response at X_{h}, define $\mathbf{X}_{h}=\binom{1}{X_{h}}$ Then

$$
\hat{Y}_{h}=\mathbf{X}_{h}^{\prime} \mathbf{b}
$$

And the variance-covariance matrix of \hat{Y}_{h} is

$$
\sigma^{2}\left\{\hat{Y}_{h}\right\}=\mathbf{X}_{h}^{\prime} \sigma^{2}\{\mathbf{b}\} \mathbf{X}_{h}=\sigma^{2} \mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}
$$

- Prediction of New Observation:

$$
s^{2}\{\text { pred }\}=\operatorname{MSE}\left(1+\mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}\right)
$$

