Modeling the Optimum PV System for Peak Shaving

Imad H. Ibrik
Energy Research Centre – An Najah National University
Nablus P.O.Box 7 West Bank - Palestine

Abstract:
The use of PV for grid connected applications has grown rapidly internationally over recent years, PV systems are potentially well suited to commercial demand side management applications because the solar resource coincides well with the typical weekday load profile of many types of commercial utility customers. The paper objective is the determination of a PV power system that allowed for the storage of solar energy and for the dispatch of that energy during the customer’s or utilities peak demand. The model presented in this paper focuses on the development of a method to obtain the optimal PV – size (kW) and PV - operation time (hours per day) for a given utility (for an electrical peak shaving). This model is for the case of a facility with a constant billing demand rate ($ / kW / month) throughout the year. The analysis is based on a linear load duration curve and uses a simplified life – cycle cost approach.

Keywords: PV-power generators, Peak shaving, Techno-economic feasibility of PV systems, Demand side management.

1. Introduction

The use of electricity is growing rapidly, the peak load in many states is now in summer and the electricity industry is set to spend a lot of money over the next decade in new generation plant, including significant expenditure on peak load plant , and on new and upgraded network assets. There are opportunities for PV and other demand side measures to contribute to point of use energy supply, there by reducing the need for central generating plant and for costly network upgrades. To do this, however, the wider benefits of PV generation need to be valued .
The integration of electricity production from fluctuating renewable energy sources such as solar into the electricity system must address the challenge of designing integrated regulation strategies of a complex system of distributed power producers. The PV power generation sources must interact with the rest of the production units in the system to make it possible for the system to secure a balance between sources and demand [1,3]. Energy side management provided by PV power generation systems have been studied extensively. Energy storage is needed in these systems due to the intermittent nature of solar energy. The deep – cycle lead acid batteries has been used as the means of energy storage [1]. This paper presents the optimum operation strategy for the peak shaving PV system.

2. Electric Demand Statistical Model :

In this section, the statistical and mathematical model for the economical sizing of an electrical peak shaving PV – system (PSPV) is developed for a given facility based upon the following assumptions :

- The load duration curve D (t), is the demand as a function of cumulative time t (i.e. the accumulated daily duration time in hrs/day of a given D (t) load in kW).
- The electrical demand is represented by a linear load – duration curve, as shown in fig. (1) and fig. (2), for a typical day (summer or winter), the facility has a demand D that varies between an upper value (daily maximum) \(P_{max} \) and lower value (daily minimum) \(P_{min} \). The facility operates \(T \) – hours per day.
- There is an even energy or consumption rate \(C_{e} \) ($ / kWh) throughout the year.
- There is an even demand rate \(C_{d} \) ($ / kW/month) for every month of the year.
- There is an even energy cost ($/kWh) for the PV system including the amortization unit installed cost and maintenance cost per unit.
- PSPV system is installed to reduce the peak demand by a maximum of \(P_{PSPV} \) kW, operating \(t_{PSPV} \) hours per day.
2.1. Electricity daily cost without peak – shaving:

Based on the above assumptions, consider a facility with the load duration curve shown in fig. (2). For a unit consumption cost C_e, the daily energy or consumption cost (without PV – system) for the facility is:

$$C_{E-	ext{daily}} = T \cdot P_{\text{min}} \cdot C_e + \frac{1}{2} \cdot T \cdot (P_{\text{max}} - P_{\text{min}}) \cdot C_e =$$

$$= \frac{T}{2} \cdot C_e (P_{\text{max}} + P_{\text{min}}) \quad (1)$$

Considering a peak demand P_{max} occurs every day, the daily demand cost is defined by:
\[C_{D\text{-daily}} = \frac{1}{n} P_{\text{max}} C_d \]

Where, \(C_e \) - unit energy or consumption cost ($/kWh), \(C_d \) - demand rate ($/kW/month), \(n \) - number of days in a month, \(T \) - Operating time-hours per day.

Thus, the total daily cost for the facility is:

\[C_{\text{total\-daily}} = C_{E\text{-daily}} + C_{D\text{-daily}} = \]

\[= \frac{T}{2} (P_{\text{max}} + P_{\text{min}}) C_e + \frac{1}{n} P_{\text{max}} C_d \quad \text{$/day}$

(3)

2.2. Demand side management by using PV:

PV systems can generate both energy value (the system's ability to save energy) and capacity value (in the form of coincident peak demand reduction) for utilities [7]. Generally, the economic viability of such systems depends on the solar resource, the conversion efficiencies of the components of the system, utility prices, and customer demand characteristics. There are important differences in the way in which the demand reduction value of dispatchable (i.e., with battery storage) and non-dispatchable (without battery storage) systems are estimated in the model.

A non-dispatchable PV system would achieve demand reductions based on the output of the system at the time that the utility is experiencing peak demand, then the demand reduction value of such a system is estimated as \(P_{PV} \) (PV output at time of utility).

A limitation of non-dispatchable systems is that the capacity value offered by the system in any given month or year is uncertain. Secondly, the time during which peak demand is experienced may not coincide with maximum solar radiation.

Dispatchable systems can be deployed for peak-shaving purposes as and when needed, and can deliver a capacity value at least equal to the battery storage value of the system [7].

For this reason, the paper focuses on the economic viability of dispatchable photovoltaic systems in peak-shaving applications and the equivalently demand reduction value will be equal \(P_{SPV} \):

\[P_{SPV} = P_{PV} + P_{bat} \]

(4)
Where, P_{PSPV} - total peak shaving of PV system, P_{PV} - PV output of utility peak demand, P_{bat} - battery bank output at time of utility peak demand.
The capacity of PV system and the size of battery can be selected according to the optimal value of P_{PSPV} and it’s operating time.

2.3. Electricity Daily Cost with DSM:

If a peak shaving PV system of size P_{PSPV} is installed in the facility to run in parallel with the utility grid during peak - load hours, so the maximum load seen by the utility is $(P_{max} - P_{PSPV})$, then the electric bill cost is:

$$
C_{bill} = \frac{T}{2} \left(P_{max} - P_{PSPV} + P_{min} \right) C_e + \frac{1}{n} \left(P_{max} - P_{PSPV} \right) C_d \tag{5}
$$

In addition, the cost of energy from the PV system ($/kWh) can be calculated using estimates cost of producing electricity by using PV in the facility.

Hence, the daily cost with demand peak shaving is:

$$
C_{total-2} = \left[T \cdot P_{min} + \frac{1}{2} \left(T + t_{PSPV} \right) (P_{max} - P_{PSPV} - P_{min}) \right] C_e + \frac{1}{n} \left(P_{max} - P_{PSPV} \right) C_d + \frac{1}{2} \cdot t_{PSPV} P_{PSPV} C_{PV} \tag{6}
$$

Where, $C_{total-2}$ – the daily total cost with demand peak shaving by using PV system, t_{PSPV} – Operating hours of P_{PSPV} system /day, C_{PV} – the cost of energy from PV system ($ / kWh).

3. Annual Worth of DSM by Peak – Shaving PV:

The annual worth (AW) or net savings $/year of the peak shaving PV system are obtained by subtracting eq. (3) from eq. (6) [4], that is:

$$
AW = C_{total-1} - C_{total-2} \tag{7}
$$

From fig. (2) we obtain:

$$
P_{PSPV} / t_{PSPV} = (P_{max} - P_{min}) / T
$$
So, the expected P_{PSPV} operative time is:

$$t_{PSPV} = P_{PSPV} \cdot T / (P_{\text{max}} - P_{\text{min}})$$ \hspace{1cm} (8)$$

Substituting the value of t_{PSPV} in eq. (7), we have:

$$AW = 365 \left[P_{PSPV}^2 \cdot T \cdot C_e /2 (P_{\text{max}} - P_{\text{min}}) + 1/n \ P_{PSPV} \ C_d -
- P_{PSPV} \cdot T \cdot C_{PV} /2 (P_{\text{max}} - P_{\text{min}}) \right]$$ \hspace{1cm} (9)$$

3.1. Optimum Conditions of DSM:

For optimal size of P_{PSPV}^* and the corresponding maximum AW (eq.9), with respect to P_{PSPV} and equating it to zero, we obtain necessary condition for the maximum annual worth or net saving per year:

$$AW' = 365 \left[P_{PSPV} \cdot T \cdot C_e / (P_{\text{max}} - P_{\text{min}}) + 1/n \ C_d -
- P_{PSPV} \cdot T \cdot C_{PV} / (P_{\text{max}} - P_{\text{min}}) \right] = 0$$ \hspace{1cm} (10)$$

If the second derivative of AW with respect to P_{PSPV} is negative, i.e. $AW'' < 0$, then AW is a strictly convex function of P_{PSPV} with a global maximum point.

So, by taking the second derivative of AW with respect to and evaluating AW'' as an inequality (< 0) we have:

$$AW'' = T \cdot C_e / (P_{\text{max}} - P_{\text{min}}) - T \cdot C_{PV} / (P_{\text{max}} - P_{\text{min}}) < 0$$ \hspace{1cm} (11)$$

Multiplying this equation by $(P_{\text{max}} - P_{\text{min}}) / T$, we have the sufficient condition for a maximum AW is:

$$C_e - C_{PV} < 0$$

or

$$C_e < C_{PV}$$ \hspace{1cm} (12)$$

Therefore, for a global maximum AW exist, the energy rate C_e must be less than the energy cost from PV C_{PV}. Since this is the case for most utility rates, we can say there is maximum AW and an optimal P_{PSPV}^* for the typical electrical demand case.
From eq. (10), we can solve for P_{PSPV} and find the optimal size P_{PSPV}^* (in kW output):

$$P_{PSPV}^* = \frac{1}{n} C_d \left(P_{\text{max}} - P_{\text{min}} \right) / T \left(C_{PV} - C_e \right)$$ \hspace{1cm} (13)

Equation (13) estimates the optimum capacity of power necessary for DSM by using PV system and it is a function of photovoltaic output and battery output.

4. **Sizing of Peak Shaving PV System** :

The primary objective of this chapter is to determine the size of PV system that allows for the storage of solar energy and for the dispatch of that energy during the utility’s peak demand.

The system can be sized according to the electricity needs eq. (13), the PV system would have to produce the total E_{PV} (kWh) per day. From fig. (2) the PV system kilowatt - hrs/day is:

$$E_{PV} = \frac{1}{2} \cdot P_{PSPV} \cdot t_{PV}$$ \hspace{1cm} (14)

4.1. **Sizing of the PV – generator** :

The peak power of the PV generator to cover such a load (P_{PV}) is obtained as follows [3]:

$$P_{PV} = \frac{E_{PV}}{\int_B \int_R \int_{PSH} S_f}$$ \hspace{1cm} (15)

Where E_{PV} – (daily electricity needs – kWh / day) ; PSH – Peak sun hours = 5.4 [2] ; \int_B – efficiency of battery; \int_R – efficiency of regulator; S_f – safety factor for compensation of resistive losses and PV – cell temperature losses $S_f = 1.15$; \int_V – efficiency of inverter.

The number of the necessary PV modules (N_{PV}) is obtained as:

$$N_{PV} = \frac{P_{PV}}{P_{MPP}}$$ \hspace{1cm} (16)

Where P_{MPP} – maximum peak power of selected PV module for the system.
4.2 Sizing the battery block:

The storage capacity of battery block for such system is considerably large. Therefore, special lead–acid battery cells (block type) of long life time (>10 years), high cycling stability – rate (>1000 times) and capability of standing deep of discharge should be selected. The ampere hour capacity (C_{Ah}) and watt hour capacity (C_{wh}) of the battery block, necessary to cover the load demands for a period of 1.5 days without sun (autonomy days), is obtained as follows [3]:

\[
C_{Ah} = \frac{1.5 \times E_{PV}}{V_B \times DOD \times I_B \times V_B}
\]

\[
C_{wh} = C_{Ah} \times V_B
\]

Where V_B and I_B are voltage and efficiency of battery block, DOD – is the permissible depth of discharge rate of a cell.

4.3 The charge regulator and inverter:

The charge regulator (CR) is necessary to protect the battery block against deep discharge and over charge. Input / output ratings of CR are fixed by the output of the PV system and battery voltage. The input of inverter have to matched with the battery block voltage while its output should fulfill specifications of the electric grid of the system [1,3].

5. Case Study

NABCO company plant in the city of Nablus in Palestine operates 12 hours per day and has a fairly constant electrical (billing) peak demand every month (see fig. 1). The actual load varies widely between a minimum 200 kW and a maximum 500 kW (see fig. 2). The demand charge is 10 $ / kW/month and the energy charge is 0.15 $ /kWh. The PV generator cost in Palestine is about 0.25 $ /kWh [1,2,3].

The optimal P_{SPV} size is calculated using equation (13),

\[
P_{SPV}^* = \frac{1}{30} \frac{10 \times (300)}{12} (0.25 - 0.15) = \frac{100}{1.2} = 83.3 \text{ kW}
\]
The potential annual savings are estimated using equation (9),

\[AW = 365 (20.66 + 27.66 - 34.44) = 5064 \, \$ / \text{year} \]

The value of AW at different sizes of \(P_{PSPV} \) are shows in fig.3.

![Fig. 3 The relation between AW and Ppv size](image)

The expected daily operating time for the \(P_{PSPV} \) is estimated using equation (8):

\[t_{PSPV} = \frac{83 \times 12}{300} = 3.3 \, \text{hours / day} \]

The energy generated from PV for DSM is calculated using equation (14):

\[E_{PV} = \frac{1}{2} P_{PSPV} \times t_{PSPV} = \frac{1}{2} \times 83 \times 3.3 = 136.95 \, \text{kWh / day} \]

The most appropriate PV system to cover the energy needs for DSM is obtained using equation (15):

\[PV = \frac{136.95 \times 1.15}{0.92 \times 0.9 \times 0.85 \times 5.4} = 41.4 \, \text{KW}_{P} \]

To install this power, a mano – crystalline PV module type SM55 [5] of a gross area of \(A_{PV} = 0.4267 \, \text{m}^2 \), rated at 12 V_{dc} and a peak power of \(P_{mPP} = 53_{WP} \) is selected. The number of the necessary PV modules (\(N_{PV} \)) is obtained by equation (16):
\[N_{\text{PV}} = \frac{41.4 \times 10^3}{53} = 781 \text{ PV modules} \]

Each 16 modules will be connected in series to build 49 parallel strings. The ampere hour capacity \(C_{\text{ah}} \) and watt hour capacity \(C_{\text{wh}} \) of the battery block, necessary to cover the DSM for a period of 1.5 days without sun, are calculated using equations (17,18):

\[C_{\text{AH}} = \frac{1.5 \times 136.95 \times 10^3}{220 \times 0.75 \times 0.85 \times 0.9} = 1627.4 \text{ Ah} \]

\[C_{\text{wh}} = 1627.4 \times 220 = 358 \text{ kWh} \]

To install this capacity, 110 battery cells (each cell rated at 2 V/1600 Ah) have to be connected in series to build a battery block of an output rated at 220 V\text{dc} 1600 AH [6].

Conclusion:

This paper provides the mathematical relationship necessary to perform a PV – DSM analysis from customers perspective. A complete set of match design method for PV – peak shaving system is introduced. In this method optimum size of PV and battery are adopted the optimum configuration which meets the load demand with the minimum cost can be uniquely determined by this method. The correct sizing of PV is important part of designing a PV system for DSM, over sizing and under sizing the PV system makes it more expensive also optimum sizing is important because it ensures maximum annual worth as well as reliable system. This arrangement offers all the benefits of PV systems with respect to low operation and maintenance costs and also ensures that PV electricity is not wasted. If a PV system is interconnected on the customer side of the meter, this translated into energy and demand charge savings. On the utility side of the meter, distributed generating resources such as PV which provide power during peak load hours can defer costly and under – utilized additions to generation and transmission capacity. In addition, every kilowatt – hour generated by a PV system reduces utility fuel and variable operation and maintenance costs.
References

