
Virtual WLAN: Extension of Wireless Networking into Virtualized 

Environments 
 

Ghannam Aljabari 1), Prof. Dr.-Ing. Evren Eren 2) 

 
1) 

Palestine Polytechnic University, Hebron, Palestine, galjabari@ppu.edu 
2) 

University of Applied Sciences Dortmund, Emil-Figge-Strasse 42, D-44227 Dortmund, Germany, eren@fh-

dortmund.de 

 
Abstract: In wired Ethernet networks (IEEE 802.3), a physical network interface can be connected to different network 

segments or shared among multiple virtual machines. In wireless LAN (IEEE 802.11) sharing a wireless network 

interface is recognized to be a difficult task. However, virtualization can solve this problem. In this paper we will 

introduce a software platform for hosting multiple virtual wireless networks over a shared physical infrastructure by 

means of open source virtualization techniques. We present the design, implementation, and performance testing of this 

platform. Results have shown that the hosting platform can extend wireless networking into virtualized environments 

without compromising the performance, isolation, or wireless LAN security mechanisms. 
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1. INTRODUCTION 
 

Virtualization technology has been widely 

adopted in data centers to optimize resource sharing 

and utilization. This technology has helped to 

consolidate and standardize hardware and software 

platforms in data centers, i.e. servers and storage. 

The main benefit of virtualization technologies is 

savings in power and infrastructure costs in addition 

to improving availability, scalability, and security. 

In recent years, virtualization has been pushed 

forward to also virtualize physical network 

infrastructures. By allowing multiple logical 

networks to co-exist on a shared physical 

infrastructure, network virtualization provides 

flexibility and manageability. Network virtualization 

often combines hardware and software resources to 

deploy virtual networks for different architectures. 

The term virtual network has been used to describe 

different types of network virtualization such as 

VLAN (Virtual Local Area Network) and VPN 

(Virtual Private Network). But recently, network 

virtualization is moving toward virtualized 

environments. 

Virtualization of wireless LANs (WLANs) has 

become one of the important issues in network 

virtualization and also for cloud computing by now. 

It is useful in many scenarios such as hosting 

multiple wireless service providers on a single 

shared physical infrastructure, providing wireless 

services with different authentication mechanisms, 

and for virtual test bed environments. Hence, there 

are some research activities in this field [1-4]. 

There are several approaches to system 

virtualization and several software implementations, 

both open source and commercial. However, most of 

the virtualization approaches are mainly developed 

for wired Ethernet networks, and are not suitable for 

virtualizing wireless LAN interface due to the nature 

of wireless LAN devices. More specifically, the 

limitations of current virtualization approaches are 

due the difficulties in emulating wireless LAN 

management functions [3]. Therefore, existing 

virtualization approaches require a separate physical 

wireless LAN device for each virtual machine (VM) 

to have its own wireless network. 

A viable solution to address the above issue is by 

giving all VMs access to the same wireless network 

and rely on network virtualization techniques such 

as VLAN or VPN to provide isolation for VM 

network traffic. However, this solution will add 

additional cost and overhead for configuring and 

maintaining a secured connection to all VMs. As a 

result, a new approach is needed to enable a single 

wireless network interface to be shared among 

several VMs without compromising the 

performance, isolation, or wireless LAN security 

mechanisms. 

By means of open source virtualization 

techniques, it is possible to create multiple virtual 

wireless networks through one physical wireless 

LAN interface, so that each virtual machine has its 

own wireless network. Available open source 

solutions such as KVM, hostapd, and VDE provide 

the software infrastructure to deploy and implement 

such an approach on Linux operating system (OS). 

This paper aims at demonstrating this approach. 

 



2. BACKGROUND 
 

Virtualization approaches enable running 

multiple OSs and applications concurrently on the 

same physical machine, eliminating the need for 

multiple physical machines. Each VM has its own 

operating system and applications such as the 

physical machine [5-7]. Thus making the 

applications unaware of the underlying hardware, 

yet viewing computing resources as shared resource 

pools available via virtualization. 

The primary benefits offered by virtualization are 

resource sharing and isolation. Unlike real 

environments where physical resources are 

dedicated to a single machine, virtual environments 

share physical resources such as CPU, memory, disk 

space, and I/O devices of the host machine with 

several VMs. With isolation, applications running on 

one VM cannot see, access, and use resources on 

other VMs [5]. 

Virtualization provides a software abstraction 

layer on top of hardware. This layer is called Virtual 

Machine Monitor (VMM), also known as a 

hypervisor. The main task of the VMM is to manage 

the hardware resource allocation for VMs and to 

provide interfaces for additional administration and 

monitoring tools [5]. However, the functionality of 

the VMM varies greatly based on architecture and 

implementation. 

Today, two alternative approaches exist to 

virtualization on x86 hardware architecture. In the so 

called full virtualization approach, VMs and guest 

OSs run on top of virtual hardware provided by the 

VMM. However, the VMM has to provide the VM 

with an image of an entire system, including virtual 

BIOS, virtual CPU, virtual memory, and virtual 

devices to allow the guest OS to run without 

modification. As a result, the guest OS or 

application is not aware of the virtual environment. 

The main advantage of full virtualization approach is 

that it supports any platform and provides complete 

isolation of different applications, which helps make 

this approach highly secure. However, this approach 

has poor performance in trying to emulate a 

complete set of hardware in software [5,7]. 

KVM, which stands for Kernel-based Virtual 

Machine, is a full virtualization solution that takes 

advantage of hardware-assist features such as Intel 

VT and AMD-V to improve the performance of 

guest OSs [8]. The first generation of hardware 

assist features was added to processors in 2006, so 

that KVM hypervisor supports only newer x86 

hardware systems. Using KVM, several fully VMs 

can be created and operated in Linux environments, 

since KVM adds VMM capabilities to the Linux 

kernel. KVM hypervisor consists of two main 

components: a set of kernel modules providing the 

core virtualization infrastructure such as CPU and 

memory management, and a user space program that 

provides emulation for I/O hardware devices, 

currently through QEMU [9]. 

OS assisted virtulaiuzation or paravirtualization 

presents each VM with an abstraction of the 

hardware that is similar but not identical to the 

underlying physical hardware. This approach 

requires modifications to the guest OSs that are 

running in the VMs. As a result, guest OSs are 

aware that they are executing on a VM, allowing for 

near-native performance [5]. 

Xen is an open source virtualization software 

based on the paravirtualization approach. The Xen 

hypervisor runs directly on hardware, allowing the 

host machine to run multiple modified guest OSs 

concurrently [6]. Modifying the guest OS is not 

feasible for non-open source platforms such as 

Microsoft Windows. As a result, such OSs are not 

supported in a paravirtualization environment. 

Recently, unmodified guest OSs are also supported 

by Xen. In this mode, Xen provides a fully 

abstracted VM with hardware support (Intel VT and 

AMD-V) referred to as hardware virtual machine 

(HVM) [10]. 

With the adoption of virtualization in data 

centers, a new layer of network virtualization is 

emerging that provides inter- and intra- VM 

connectivity and has many of the same functions 

provided by the physical networking hardware. 

Today, this layer is providing connectivity to tens of 

VMs for a physical machine [11]. 

The main network components provided by 

virtual networking, as shown in Fig. 1, are virtual 

Ethernet interfaces, used by individual VMs, and 

virtual switches, which connect the VMs to each 

other [12]. VMs can also be configured with one or 

more virtual Ethernet interface to offer different 

virtual network appliances for virtual environments 

such as virtual routers (VR) and virtual firewalls. 

VRs are essential components in the virtual 

networking infrastructure because they operate in 

much the same way as physical routers, forwarding 

and routing packets based on standard routing 

protocols such as RIP and OSPF. Virtual firewalls 

provide the usual packet filtering and monitoring 

role provided via a physical network firewall. Thus, 

virtual networking components manage 

communication between co-located VMs, and 

connectivity to physical machines. 

Modern OSs provides the ability to create virtual 

network interfaces that are supported entirely in 

software. From the OS's point of view, these 



interfaces behave similar to physical network 

interfaces. However, the virtual interface does not 

send the packets into the wire, but makes them 

available to userspace programs running on the 

system. Virtual network interfaces are commonly 

referred to as TAP and TUN interfaces under Linux. 

TAP interfaces operate with Layer 2 packets, while 

TUN interfaces can handle Layer 3 packets. VMs 

use the TAP interface to create a network bridge 

with the physical network interface [2]. 

 

Fig.  1 - Virtual networking components 

Most of the virtualization approaches also 

provide some form of virtual networking. For 

example, VMware virtualization software has a 

distributed switch for virtual machine networking 

[13]. Linux-based virtualization platforms, including 

Xen and KVM, generally use network bridging or 

Virtual Distributed Ethernet (VDE) switch [14]. A 

network bridge acts like an Ethernet hub; passing all 

traffic. While, VDE provides Layer 2 switching, 

including spanning-tree protocol and VLAN 

support. 

Open vSwitch is an open source software switch 

that provides connectivity between the VMs and the 

physical interfaces. It implements standard Layer 2 

and Layer 3 switching with advanced features such 

as traffic monitoring (e.g. NetFlow), port mirroring 

(e.g. SPAN), basic ACL (Access Control List) and 

QoS (Quality of Service) policies. The Open 

vSwitch consists of two components: a fast kernel 

module and lightweight userspace program. The 

kernel module implements the forwarding engine, 

while the userspace program implements forwarding 

logic and configuration interfaces. Open vSwitch 

supports multiple Linux-based virtualization 

software, including Xen and KVM [11,15]. 

Quagga is an open source routing software that 

provides implementations of TCP/IP based routing 

protocols such as OSPF, RIP, and BGP. In addition 

to traditional IPv4 routing protocols, Quagga also 

supports IPv6 routing protocols [16]. Vyatta 

software [17] incorporates open source routing and 

security projects such as Quagga, IPtables, 

OpenVPN and many others into a network OS for 

x86 hardware platforms. Vyatta also can be 

delivered as VMs, providing routing, firewalling, 

VPN, and more for virtual and cloud computing 

environments. Thus, Vyatta network OS 

complements virtual networking components by 

delivering the virtual router, virtual firewall, and 

virtual VPN in the hypervisor. 

 

3. VIRTUALIZATION  OF WLAN 
INTERFACE  

 

A network interface can be shared and hence 

virtualized using either a software or hardware 

based approach, as shown in Fig. 2. In software-

based approach, network interface virtualization is 

completely implemented as software to provide 

virtual network interfaces (VIF) for multiple VMs 

[3,18,19]. In this approach, bridging functionality is 

often enabled on the physical network interface to 

grant all VMs access to the same physical network. 

Full virtualization techniques provide virtual 

network interfaces by emulating legacy Ethernet 

devices for simplicity. The virtual network interfaces 

appear to the VM as virtualized hardware devices 

within the hypervisor. With this technique, no 

modification is required for the guest OS. However, 

there is a significant performance overhead due to 

the context switching between VM and hypervisor. 

In the paravirtualization technique, the 

paravirtualized driver is used in the guest OS to 

achieve high I/O performance. However, this 

method requires modifying the guest OS and having 

a special driver to expose some details of the 

hardware [3]. 

 

Fig.  2 - Network interface virtualization approaches 

The second approach depends on hardware 

virtualization support to partition a physical network 

device to multiple virtual network interfaces. Then, 

each virtual interface can be assigned directly to a 

specific VM. While this approach reduces the 



performance overhead of software-based network 

interface virtualization, it increases the complexity, 

maintainability and cost of network devices 

[3,18,19]. An example of hardware-based approach 

is Single Root I/O Virtualization (SR-IOV) where a 

single PCI device can be divided into multiple 

Virtual Functions (VFs). Each VF can then be used 

by a VM, allowing one physical device to be shared 

among multiple VMs. As a result, close to native I/O 

performance can be achieved, in addition to fair 

sharing of the bandwidth [20]. 

Virtualization of a wireless LAN interface is 

more complicated than for wired network interface 

because the capacity of the wireless LAN channel 

varies with radio signal strength and interference 

from other wireless LAN devices. This requires 

including complex management functions into 

wireless devices to achieve efficient and reliable 

communication. Examples of such management 

functions include data rate adaption, power 

management, and power control. The device driver, 

which is part of the OS, is also involved in such 

management functions for control and configuration. 

In contrast, wired LAN devices are data centric and 

have very little management functions [3]. 

A typical WLAN device consists of: RF 

transceiver, Baseband, and MAC layer. The RF 

transceiver performs radio signal transmitting and 

receiving, while the Baseband mainly responsible 

for digital signal processing. RF transceiver and 

Baseband are generally referred to as PHY layer. 

The MAC layer often consists of a hardware 

controller on the WLAN device and a software 

driver on the host computer. Most of the wireless 

LAN functions such as authentication and 

authorization are performed at MAC layer [3]. 

In the beginning, the MAC layer was entirely 

managed by the firmware on the wireless LAN 

device. This approach is called FullMAC, where full 

MAC layer functionality is executed by the 

hardware controller on the wireless device. New 

implementation of wireless LAN devices is based on 

SoftMAC approach, where most of the MAC layer 

functionality is moved to device driver on the host 

computer, with the firmware providing a set of 

functional primitives [2]. This approach provides a 

high degree of software control over the MAC layer 

functions, while still allowing the PHY layer to 

define the radio waveform. 

MultiNet [21], which was later named 

VirtualWiFi, proposes a software based approach to 

virtualize a single wireless interface. Virtualization 

of wireless LAN interface is implemented with 

intermediate driver, called MultiNet Protocol Driver, 

which continuously switches the radio resources 

across multiple wireless networks. This approach 

has been adopted in Microsoft Windows 7 to give a 

user the ability to simultaneously connect to multiple 

IEEE 802.11 networks with one WiFi card. 

However, MultiNet approach was not designed to 

support the VM environment [3]. 

Recently, a novel virtualization approach on 

802.11 MAC layer has emerged in the wireless 

industry. Multiple virtual wireless LAN interfaces 

are separated at MAC layer sharing the same PHY 

layer [3]. As shown in Fig. 3, multiple virtual MAC 

entities can be active and share a common PHY 

layer via Time Division Multiplexing (TDM) on the 

same channel. This approach reduces costs, 

eliminating co-channel interference, and offering 

smooth roaming as clients move through the 

WLAN's coverage area. WLAN products that 

provide support for such an approach include 

Atheros, Intel, and Marvell. 

 

Fig.  3 - Wireless network interface virtualization 

In the case that different virtual MACs need to 

operate on different RF channels, a time-critical 

scheduling is required for multi-channel MAC 

functions. Implementing such solution will allow the 

PHY layer to switch between different RF channels 

and keep virtual MACs in synchronization with the 

associated networks. Several research efforts have 

been made in implementing multi-channel 

virtualization approach for WLAN devices such as 

Net-X [22] and FreeMAC [23]. 

Virtualization of the WLAN interface enables 

several usage scenarios for wireless networking, 

some of these are: 

 Simultaneous Connectivity: a wireless device 

can be connected to multiple wireless networks 

simultaneously. E.g., One virtual interface 

operates in STA mode to connect to an AP, while 

another virtual interface operates in an ad - hoc 

mode to create a peer-to-peer wireless network. 

 Wireless Relay/Extension: a wireless client can 

extend the coverage area of the network by 

creating a second virtual interface in AP mode, 



allowing remote clients outside the basic 

operating range to relay data to the main AP. 

 Soft Handover: a wireless client can use a 

second virtual interface to scan all available APs, 

while the first virtual interface is connected to the 

wireless network. After selecting the new AP, a 

client can authenticate and associate with it 

without losing the connection with the current 

AP. In this scenario, we can avoid packet loss 

and delay times in real-time applications such 

VoIP and video streaming [2]. 

 Multi-Streaming Service: a mobile device can 

communicate with multiple APs operating on 

different channels, as the device has several 

virtual interfaces. The most stable connection 

becomes the main connection and others can 

become sub-connections. By this scenario, we 

can improve streaming performance such as 

multi-path streaming without relay server [24]. 

 Wireless Mesh Network (WMN): a multi-hop 

WMN is built through virtual interfaces created 

at some mesh nodes. In this case, a mesh node is 

configured to work in STA mode and acts as AP 

by creating a second virtual interface in AP 

mode. Thus, remote clients located outside the 

coverage range (wireless cell) can get access to 

the network via clients connected to any AP in 

the wireless cell [25]. 

 Virtualized Environment: a virtual machine can 

establish its own wireless LAN connection by 

creating a virtual interface in STA mode. In this 

case, multiple wireless connections are supported 

through one physical wireless LAN network 

interface. 

 

4. VIRTUAL WLAN APPROACH  
 

With the introduction of IEEE 802.11n and the 

increase in bandwidth, wireless LAN virtualization 

is required as an alternative approach for deploying 

multiple virtual wireless LANs with different 

authentication methods. Wireless LAN virtualization 

enables several virtual wireless networks to coexist 

on a common shared physical device. Multiple 

virtual interfaces can be created on top of the same 

radio resources, allowing the same functionality as 

in multi-radio solution. 

All virtual interfaces operate concurrently 

without considering the physical nature of the 

wireless medium as well as physical management 

tasks. Each virtual interface abstracts a single 

wireless device and has its own wireless network 

and its own unique MAC address. From the 

application’s perspective, the virtual wireless 

network behaves like wired Ethernet, but is wireless. 

Using wireless LAN virtualization, a virtual 

interface can be configured to operate as an access 

point (AP) and also as a station (STA) device. A 

virtual AP is bound to a virtual network interface 

and each virtual AP independently keeps the 

configuration and service of the wireless network. In 

this way, several virtual APs can be configured on 

top of solely one physical wireless LAN device, as 

shown in Fig. 4. 

A virtual AP acts as the master device in a virtual 

wireless network and operates in much the same 

way as physical AP, allowing wireless stations to 

communicate with each other by managing and 

maintaining a list of associated stations. In general, 

the virtual AP consists of two parts: control plane 

and forwarding plane. The control plane is 

concerned with the information that defines the 

functionality of the AP such as the SSID (Service 

Set Identifier), operation mode, and RF channel. 

While the forwarding plane defines the part of the 

AP, that uses a lookup table as a base to forward 

packets to its destination.   

 

Fig.  4 - Physical and virtual APs 

By integrating wireless LAN virtualization 

techniques into the hypervisor, the wireless LAN 

interface can be shared among several VMs. To each 

VM one or more virtual wireless interfaces can be 

assigned. As shown in Fig. 5, VIFs are configured to 

operate in one of the wireless operating modes, 

specifically the AP mode, and then can be assigned 

to various virtual networking components. 

The main goal of this approach is to combine 

wireless network functionality into a common 

virtualized environment and to achieve performance 

levels comparable to the native hardware wireless 

LAN. A similar approach named virtual WiFi [3] 

has been taken to provide wireless LAN client 

functionality inside VMs. However, virtual WiFi 

approach is intended to support mobile client 

environments where the VM runs on the client 

device and has to be aware of the wireless interface 

to establish its own wireless connection. 

The Virtual WLAN approach is suitable for 

virtualizing wireless LAN infrastructures, where 

multiple separate wireless LANs can be deployed on 



a shared physical infrastructures with different 

security mechanisms such as WPA and IEEE 

802.11i. Since each virtual wireless LAN is logically 

separated, wireless LAN providers may use virtual 

WLANs to offer multiple services on the same 

physical infrastructure. Alternatively, virtual 

WLANs can be shared by multiple providers 

allowing each provider to offer separate services for 

their subscribers [1]. 

 

Fig.  5 - Virtual wireless LAN approach 

 This approach is based on the Atheros WLAN 

chipset which supports concurrent wireless 

connections sharing the same PHY layer of the 

wireless LAN device. This capability in wireless 

LAN devices is also referred to as multi-SSIDs, 

where each SSID is equivalent to a VLAN on a 

wired network. We extend multi-SSIDs capability to 

operate in the virtualization environments, where 

each virtual WLAN can have its own addressing, 

forwarding, routing, and security mechanism.  

To emulate a physical AP, it is necessary to 

provide the emulation at different layers such as 

layer 2 (MAC), layer 3 (IP), and above. At the MAC 

layer, the behavior of a physical AP is being 

emulated by allocating a distinct MAC address and 

SSID to each virtual AP. At the IP layer, it is 

emulated by allocating a distinct IP address and 

potentially a Fully Qualified Domain Name (FQDN) 

to each virtual AP. In higher layers, the emulation 

can be carried out by providing each virtual AP with 

a unique authentication and accounting 

configuration such as (a shared key, or EAP methods 

with RADIUS authentication), or SNMP 

communities. 

 In our approach, a virtual wireless AP or router 

is constructed by configuring the VIF to operate in 

AP mode. This sets the main functionality of the 

wireless AP such as IEEE 802.11 operation mode 

and SSID. Once configured, the wireless interface is 

attached to a virtual switch to enable MAC 

forwarding similar to a physical AP. Then, the 

virtual AP interface is connected to a virtual router, 

in the same way as the virtual Ethernet interface, to 

enable IP forwarding and routing. 

 

5. IMPLEMENTAION  
 

The multi-SSID capability given by the Atheros 

chipset allows implementing multiple IEEE 802.11 

networks on a single physical wireless card with 

Linux (Linux kernel version 2.6.33 and higher), 

since it includes a wireless driver supporting 

multiple VIF configurations.  

The wireless driver for Atheros WLAN devices 

was initially developed by the madwifi project, and 

then became part of the Linux kernel. The 

implementation model of Linux kernel WLAN 

driver is currently based on SoftMAC wireless 

devices, where most of the MAC layer functionality 

is managed by the driver. For the time being, Linux 

kernel supports all wireless modes with PCI/PCI-

Express Atheros WLAN devices only [26]. 

In order to implement our approach, we used a 

conventional PC with a wireless LAN card based on 

the Atheros IEEE 802.11n chipset. It had an Intel 

Core 2 processor with VT support, Gigabit Ethernet 

interface and 3 GB RAM. Ubuntu Linux has been 

chosen to host the virtualization environment for 

virtual WLAN approach. We used KVM as backend 

for virtualization and libvirt as frontend for 

managing VMs. With libvirt, there come two 

management tools: virt-manager as graphical user 

interface (GUI) and virtsh as command line interface 

(CLI). 

The virtual wireless interfaces have been created 

using a CLI configuration utility in Linux named 

“iw”. Once created, the interfaces have been 

configured to function as virtual AP or virtual STA 

interfaces. It is essential for all VIFs to have a 

unique MAC address, which can be assigned with 

“ifconfig hw” command or “macchanger” utility. 

A virtual AP functionality has been implemented 

using the hostapd daemon or background service. 

hostapd is an open source software for controlling 

wireless LAN authentication and association. It 

implements IEEE 802.11 AP management and 

provide support for several security mechanisms 

such as WPA, IEEE 802.11i, and IEEE 802.1X [27]. 

The virtual AP interface has been connected to a 

VDE switch to enable MAC forwarding similar to a 

physical AP.  

For testing our approach, three virtual wireless 

routers have been hosted on the PC with a shared 

Internet connection. We created three virtual APs in 



IEEE 802.11g operation mode, and three virtual 

routers running Vyatta OS. Each virtual router had 

two virtual Ethernet interfaces. One of them was 

connected to the virtual AP interface and the other to 

the physical Ethernet interface using the Linux 

interface bridging feature. Each virtual router acted 

as a DHCP server and DNS forwarder for the virtual 

wireless LAN and each virtual AP broadcasted 

different SSIDs to distinguish the wireless networks. 

NAT functionality was also added to the virtual 

routers to maintain public IP addresses and to 

enhance wireless network security. Using these 

virtual routers, different wireless LAN clients could 

access the Internet with different wireless LAN 

security mechanisms. 

 

6. PERFORMANCE AND RESULTS 
 

We have conducted some tests to understand the 

impact of the virtual software layer on wireless 

LANs. The objective of the tests was to compare and 

quantify the performance of both conventional and 

virtualized wireless networks. Testing WLAN 

performance primarily included two test metrics: 

throughput and response time. These performance 

metrics were used to evaluate the applicability of our 

approach for WLAN infrastructure virtualization 

since the virtual networks had to handle the same 

kind of traffic as conventional networks. 

The throughput of WLAN is defined as the speed 

with which a user can send and receive data between 

the client and the AP. Throughput varies across the 

WLAN’s coverage area. For this reason, we placed 

the test machines at close range to operate on the 

maximum available channel bandwidth. 

Theoretically, the maximum TCP rate of 802.11g 

network is 24.4 Mbps and the maximum UDP rate is 

30.5 Mbps. The UDP throughput is higher than TCP 

throughput because there is less protocol overhead 

associated with UDP. Therefore, TCP throughput is 

the most relevant metric in our performance 

measurements. 

To measure the throughput, we used IPerf and 

JPerf as the graphical interface. IPerf tool was used 

to measure TCP and UDP throughput in two 

directions: uplink direction (from the client to the 

virtual AP) and downlink direction (from the virtual 

AP to the client). To measure response times or 

latencies, we used ping. Ping is used to measure the 

round-trip time between the client and the virtual 

AP. In our test setup, IPerf was installed on two 

machines; the machine which hosts the virtual 

wireless routers functioned as IPerf server and the 

wireless client machine as IPerf client. IPerf was 

configured on the wireless client to run tests for 60 

seconds in both directions and provided values in 

Mbps. 

We performed the same test in both native and 

virtual environments. In the native hardware 

environment, the tests were performed between a 

remote client and host machine running three virtual 

APs without virtualization. In the virtual 

environment, the tests are performed between a 

remote client and a VM directly attached to the 

virtual routers. In this case, the wireless traffic 

passing through the virtual routers. 

Fig. 6 depicts the throughput test results where 

all throughput results have been averaged over three 

measurements. The average downlink/uplink TCP 

throughput is 21.8/18.6 Mbps in the native hardware 

environment and 21.4/18.2 Mbps in a virtual 

environment. Latency test results show that the 

average round-trip time in native hardware 

environment is 1.1 msec and 2.1 msec in the virtual 

case. This latency overhead comes from the 

virtualization layer. The results show that our 

proposed solution achieves performance metrics 

comparable to the native hardware environment. 

 

Fig.  6 - Thrughput test results 

 

7. CONCLUSION 
 

In this paper, we introduced a virtual networking 

infrastructure using different virtualization 

techniques. Also, we proposed a viable approach to 

realize virtual WLANs by combining wireless LAN 

virtualization technique with open source 

virtualization platform. 

Our approach adds wireless LAN functionally to 

virtualization environments. Summarizing some of 

the benefits, we can conclude that our proposed 

solution: 

 Enables virtualized wireless LAN architectures. 

 Builds wired and wireless networks without 

deploying physical infrastructure. 

 Adds the wireless LAN management and control 

functions to virtualization environments. 

For the future, it is planned to investigate 

performance measurement and optimization with the 



Xen open source hypervisor. Also, we will design a 

platform for virtual WLAN approach with different 

security infrastructures. 
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