
Virtual WLAN: Extension of Wireless Networking into Virtualized

Environments

Ghannam Aljabari 1), Prof. Dr.-Ing. Evren Eren 2)

1)

Palestine Polytechnic University, Hebron, Palestine, galjabari@ppu.edu
2)

University of Applied Sciences Dortmund, Emil-Figge-Strasse 42, D-44227 Dortmund, Germany, eren@fh-

dortmund.de

Abstract: In wired Ethernet networks (IEEE 802.3), a physical network interface can be connected to different network

segments or shared among multiple virtual machines. In wireless LAN (IEEE 802.11) sharing a wireless network

interface is recognized to be a difficult task. However, virtualization can solve this problem. In this paper we will

introduce a software platform for hosting multiple virtual wireless networks over a shared physical infrastructure by

means of open source virtualization techniques. We present the design, implementation, and performance testing of this

platform. Results have shown that the hosting platform can extend wireless networking into virtualized environments

without compromising the performance, isolation, or wireless LAN security mechanisms.

Keywords: Virtualization; Wireless LAN; Virtual network; Hypervisor; KVM

1. INTRODUCTION

Virtualization technology has been widely

adopted in data centers to optimize resource sharing

and utilization. This technology has helped to

consolidate and standardize hardware and software

platforms in data centers, i.e. servers and storage.

The main benefit of virtualization technologies is

savings in power and infrastructure costs in addition

to improving availability, scalability, and security.

In recent years, virtualization has been pushed

forward to also virtualize physical network

infrastructures. By allowing multiple logical

networks to co-exist on a shared physical

infrastructure, network virtualization provides

flexibility and manageability. Network virtualization

often combines hardware and software resources to

deploy virtual networks for different architectures.

The term virtual network has been used to describe

different types of network virtualization such as

VLAN (Virtual Local Area Network) and VPN

(Virtual Private Network). But recently, network

virtualization is moving toward virtualized

environments.

Virtualization of wireless LANs (WLANs) has

become one of the important issues in network

virtualization and also for cloud computing by now.

It is useful in many scenarios such as hosting

multiple wireless service providers on a single

shared physical infrastructure, providing wireless

services with different authentication mechanisms,

and for virtual test bed environments. Hence, there

are some research activities in this field [1-4].

There are several approaches to system

virtualization and several software implementations,

both open source and commercial. However, most of

the virtualization approaches are mainly developed

for wired Ethernet networks, and are not suitable for

virtualizing wireless LAN interface due to the nature

of wireless LAN devices. More specifically, the

limitations of current virtualization approaches are

due the difficulties in emulating wireless LAN

management functions [3]. Therefore, existing

virtualization approaches require a separate physical

wireless LAN device for each virtual machine (VM)

to have its own wireless network.

A viable solution to address the above issue is by

giving all VMs access to the same wireless network

and rely on network virtualization techniques such

as VLAN or VPN to provide isolation for VM

network traffic. However, this solution will add

additional cost and overhead for configuring and

maintaining a secured connection to all VMs. As a

result, a new approach is needed to enable a single

wireless network interface to be shared among

several VMs without compromising the

performance, isolation, or wireless LAN security

mechanisms.

By means of open source virtualization

techniques, it is possible to create multiple virtual

wireless networks through one physical wireless

LAN interface, so that each virtual machine has its

own wireless network. Available open source

solutions such as KVM, hostapd, and VDE provide

the software infrastructure to deploy and implement

such an approach on Linux operating system (OS).

This paper aims at demonstrating this approach.

2. BACKGROUND

Virtualization approaches enable running

multiple OSs and applications concurrently on the

same physical machine, eliminating the need for

multiple physical machines. Each VM has its own

operating system and applications such as the

physical machine [5-7]. Thus making the

applications unaware of the underlying hardware,

yet viewing computing resources as shared resource

pools available via virtualization.

The primary benefits offered by virtualization are

resource sharing and isolation. Unlike real

environments where physical resources are

dedicated to a single machine, virtual environments

share physical resources such as CPU, memory, disk

space, and I/O devices of the host machine with

several VMs. With isolation, applications running on

one VM cannot see, access, and use resources on

other VMs [5].

Virtualization provides a software abstraction

layer on top of hardware. This layer is called Virtual

Machine Monitor (VMM), also known as a

hypervisor. The main task of the VMM is to manage

the hardware resource allocation for VMs and to

provide interfaces for additional administration and

monitoring tools [5]. However, the functionality of

the VMM varies greatly based on architecture and

implementation.

Today, two alternative approaches exist to

virtualization on x86 hardware architecture. In the so

called full virtualization approach, VMs and guest

OSs run on top of virtual hardware provided by the

VMM. However, the VMM has to provide the VM

with an image of an entire system, including virtual

BIOS, virtual CPU, virtual memory, and virtual

devices to allow the guest OS to run without

modification. As a result, the guest OS or

application is not aware of the virtual environment.

The main advantage of full virtualization approach is

that it supports any platform and provides complete

isolation of different applications, which helps make

this approach highly secure. However, this approach

has poor performance in trying to emulate a

complete set of hardware in software [5,7].

KVM, which stands for Kernel-based Virtual

Machine, is a full virtualization solution that takes

advantage of hardware-assist features such as Intel

VT and AMD-V to improve the performance of

guest OSs [8]. The first generation of hardware

assist features was added to processors in 2006, so

that KVM hypervisor supports only newer x86

hardware systems. Using KVM, several fully VMs

can be created and operated in Linux environments,

since KVM adds VMM capabilities to the Linux

kernel. KVM hypervisor consists of two main

components: a set of kernel modules providing the

core virtualization infrastructure such as CPU and

memory management, and a user space program that

provides emulation for I/O hardware devices,

currently through QEMU [9].

OS assisted virtulaiuzation or paravirtualization

presents each VM with an abstraction of the

hardware that is similar but not identical to the

underlying physical hardware. This approach

requires modifications to the guest OSs that are

running in the VMs. As a result, guest OSs are

aware that they are executing on a VM, allowing for

near-native performance [5].

Xen is an open source virtualization software

based on the paravirtualization approach. The Xen

hypervisor runs directly on hardware, allowing the

host machine to run multiple modified guest OSs

concurrently [6]. Modifying the guest OS is not

feasible for non-open source platforms such as

Microsoft Windows. As a result, such OSs are not

supported in a paravirtualization environment.

Recently, unmodified guest OSs are also supported

by Xen. In this mode, Xen provides a fully

abstracted VM with hardware support (Intel VT and

AMD-V) referred to as hardware virtual machine

(HVM) [10].

With the adoption of virtualization in data

centers, a new layer of network virtualization is

emerging that provides inter- and intra- VM

connectivity and has many of the same functions

provided by the physical networking hardware.

Today, this layer is providing connectivity to tens of

VMs for a physical machine [11].

The main network components provided by

virtual networking, as shown in Fig. 1, are virtual

Ethernet interfaces, used by individual VMs, and

virtual switches, which connect the VMs to each

other [12]. VMs can also be configured with one or

more virtual Ethernet interface to offer different

virtual network appliances for virtual environments

such as virtual routers (VR) and virtual firewalls.

VRs are essential components in the virtual

networking infrastructure because they operate in

much the same way as physical routers, forwarding

and routing packets based on standard routing

protocols such as RIP and OSPF. Virtual firewalls

provide the usual packet filtering and monitoring

role provided via a physical network firewall. Thus,

virtual networking components manage

communication between co-located VMs, and

connectivity to physical machines.

Modern OSs provides the ability to create virtual

network interfaces that are supported entirely in

software. From the OS's point of view, these

interfaces behave similar to physical network

interfaces. However, the virtual interface does not

send the packets into the wire, but makes them

available to userspace programs running on the

system. Virtual network interfaces are commonly

referred to as TAP and TUN interfaces under Linux.

TAP interfaces operate with Layer 2 packets, while

TUN interfaces can handle Layer 3 packets. VMs

use the TAP interface to create a network bridge

with the physical network interface [2].

Fig. 1 - Virtual networking components

Most of the virtualization approaches also

provide some form of virtual networking. For

example, VMware virtualization software has a

distributed switch for virtual machine networking

[13]. Linux-based virtualization platforms, including

Xen and KVM, generally use network bridging or

Virtual Distributed Ethernet (VDE) switch [14]. A

network bridge acts like an Ethernet hub; passing all

traffic. While, VDE provides Layer 2 switching,

including spanning-tree protocol and VLAN

support.

Open vSwitch is an open source software switch

that provides connectivity between the VMs and the

physical interfaces. It implements standard Layer 2

and Layer 3 switching with advanced features such

as traffic monitoring (e.g. NetFlow), port mirroring

(e.g. SPAN), basic ACL (Access Control List) and

QoS (Quality of Service) policies. The Open

vSwitch consists of two components: a fast kernel

module and lightweight userspace program. The

kernel module implements the forwarding engine,

while the userspace program implements forwarding

logic and configuration interfaces. Open vSwitch

supports multiple Linux-based virtualization

software, including Xen and KVM [11,15].

Quagga is an open source routing software that

provides implementations of TCP/IP based routing

protocols such as OSPF, RIP, and BGP. In addition

to traditional IPv4 routing protocols, Quagga also

supports IPv6 routing protocols [16]. Vyatta

software [17] incorporates open source routing and

security projects such as Quagga, IPtables,

OpenVPN and many others into a network OS for

x86 hardware platforms. Vyatta also can be

delivered as VMs, providing routing, firewalling,

VPN, and more for virtual and cloud computing

environments. Thus, Vyatta network OS

complements virtual networking components by

delivering the virtual router, virtual firewall, and

virtual VPN in the hypervisor.

3. VIRTUALIZATION OF WLAN
INTERFACE

A network interface can be shared and hence

virtualized using either a software or hardware

based approach, as shown in Fig. 2. In software-

based approach, network interface virtualization is

completely implemented as software to provide

virtual network interfaces (VIF) for multiple VMs

[3,18,19]. In this approach, bridging functionality is

often enabled on the physical network interface to

grant all VMs access to the same physical network.

Full virtualization techniques provide virtual

network interfaces by emulating legacy Ethernet

devices for simplicity. The virtual network interfaces

appear to the VM as virtualized hardware devices

within the hypervisor. With this technique, no

modification is required for the guest OS. However,

there is a significant performance overhead due to

the context switching between VM and hypervisor.

In the paravirtualization technique, the

paravirtualized driver is used in the guest OS to

achieve high I/O performance. However, this

method requires modifying the guest OS and having

a special driver to expose some details of the

hardware [3].

Fig. 2 - Network interface virtualization approaches

The second approach depends on hardware

virtualization support to partition a physical network

device to multiple virtual network interfaces. Then,

each virtual interface can be assigned directly to a

specific VM. While this approach reduces the

performance overhead of software-based network

interface virtualization, it increases the complexity,

maintainability and cost of network devices

[3,18,19]. An example of hardware-based approach

is Single Root I/O Virtualization (SR-IOV) where a

single PCI device can be divided into multiple

Virtual Functions (VFs). Each VF can then be used

by a VM, allowing one physical device to be shared

among multiple VMs. As a result, close to native I/O

performance can be achieved, in addition to fair

sharing of the bandwidth [20].

Virtualization of a wireless LAN interface is

more complicated than for wired network interface

because the capacity of the wireless LAN channel

varies with radio signal strength and interference

from other wireless LAN devices. This requires

including complex management functions into

wireless devices to achieve efficient and reliable

communication. Examples of such management

functions include data rate adaption, power

management, and power control. The device driver,

which is part of the OS, is also involved in such

management functions for control and configuration.

In contrast, wired LAN devices are data centric and

have very little management functions [3].

A typical WLAN device consists of: RF

transceiver, Baseband, and MAC layer. The RF

transceiver performs radio signal transmitting and

receiving, while the Baseband mainly responsible

for digital signal processing. RF transceiver and

Baseband are generally referred to as PHY layer.

The MAC layer often consists of a hardware

controller on the WLAN device and a software

driver on the host computer. Most of the wireless

LAN functions such as authentication and

authorization are performed at MAC layer [3].

In the beginning, the MAC layer was entirely

managed by the firmware on the wireless LAN

device. This approach is called FullMAC, where full

MAC layer functionality is executed by the

hardware controller on the wireless device. New

implementation of wireless LAN devices is based on

SoftMAC approach, where most of the MAC layer

functionality is moved to device driver on the host

computer, with the firmware providing a set of

functional primitives [2]. This approach provides a

high degree of software control over the MAC layer

functions, while still allowing the PHY layer to

define the radio waveform.

MultiNet [21], which was later named

VirtualWiFi, proposes a software based approach to

virtualize a single wireless interface. Virtualization

of wireless LAN interface is implemented with

intermediate driver, called MultiNet Protocol Driver,

which continuously switches the radio resources

across multiple wireless networks. This approach

has been adopted in Microsoft Windows 7 to give a

user the ability to simultaneously connect to multiple

IEEE 802.11 networks with one WiFi card.

However, MultiNet approach was not designed to

support the VM environment [3].

Recently, a novel virtualization approach on

802.11 MAC layer has emerged in the wireless

industry. Multiple virtual wireless LAN interfaces

are separated at MAC layer sharing the same PHY

layer [3]. As shown in Fig. 3, multiple virtual MAC

entities can be active and share a common PHY

layer via Time Division Multiplexing (TDM) on the

same channel. This approach reduces costs,

eliminating co-channel interference, and offering

smooth roaming as clients move through the

WLAN's coverage area. WLAN products that

provide support for such an approach include

Atheros, Intel, and Marvell.

Fig. 3 - Wireless network interface virtualization

In the case that different virtual MACs need to

operate on different RF channels, a time-critical

scheduling is required for multi-channel MAC

functions. Implementing such solution will allow the

PHY layer to switch between different RF channels

and keep virtual MACs in synchronization with the

associated networks. Several research efforts have

been made in implementing multi-channel

virtualization approach for WLAN devices such as

Net-X [22] and FreeMAC [23].

Virtualization of the WLAN interface enables

several usage scenarios for wireless networking,

some of these are:

 Simultaneous Connectivity: a wireless device

can be connected to multiple wireless networks

simultaneously. E.g., One virtual interface

operates in STA mode to connect to an AP, while

another virtual interface operates in an ad - hoc

mode to create a peer-to-peer wireless network.

 Wireless Relay/Extension: a wireless client can

extend the coverage area of the network by

creating a second virtual interface in AP mode,

allowing remote clients outside the basic

operating range to relay data to the main AP.

 Soft Handover: a wireless client can use a

second virtual interface to scan all available APs,

while the first virtual interface is connected to the

wireless network. After selecting the new AP, a

client can authenticate and associate with it

without losing the connection with the current

AP. In this scenario, we can avoid packet loss

and delay times in real-time applications such

VoIP and video streaming [2].

 Multi-Streaming Service: a mobile device can

communicate with multiple APs operating on

different channels, as the device has several

virtual interfaces. The most stable connection

becomes the main connection and others can

become sub-connections. By this scenario, we

can improve streaming performance such as

multi-path streaming without relay server [24].

 Wireless Mesh Network (WMN): a multi-hop

WMN is built through virtual interfaces created

at some mesh nodes. In this case, a mesh node is

configured to work in STA mode and acts as AP

by creating a second virtual interface in AP

mode. Thus, remote clients located outside the

coverage range (wireless cell) can get access to

the network via clients connected to any AP in

the wireless cell [25].

 Virtualized Environment: a virtual machine can

establish its own wireless LAN connection by

creating a virtual interface in STA mode. In this

case, multiple wireless connections are supported

through one physical wireless LAN network

interface.

4. VIRTUAL WLAN APPROACH

With the introduction of IEEE 802.11n and the

increase in bandwidth, wireless LAN virtualization

is required as an alternative approach for deploying

multiple virtual wireless LANs with different

authentication methods. Wireless LAN virtualization

enables several virtual wireless networks to coexist

on a common shared physical device. Multiple

virtual interfaces can be created on top of the same

radio resources, allowing the same functionality as

in multi-radio solution.

All virtual interfaces operate concurrently

without considering the physical nature of the

wireless medium as well as physical management

tasks. Each virtual interface abstracts a single

wireless device and has its own wireless network

and its own unique MAC address. From the

application’s perspective, the virtual wireless

network behaves like wired Ethernet, but is wireless.

Using wireless LAN virtualization, a virtual

interface can be configured to operate as an access

point (AP) and also as a station (STA) device. A

virtual AP is bound to a virtual network interface

and each virtual AP independently keeps the

configuration and service of the wireless network. In

this way, several virtual APs can be configured on

top of solely one physical wireless LAN device, as

shown in Fig. 4.

A virtual AP acts as the master device in a virtual

wireless network and operates in much the same

way as physical AP, allowing wireless stations to

communicate with each other by managing and

maintaining a list of associated stations. In general,

the virtual AP consists of two parts: control plane

and forwarding plane. The control plane is

concerned with the information that defines the

functionality of the AP such as the SSID (Service

Set Identifier), operation mode, and RF channel.

While the forwarding plane defines the part of the

AP, that uses a lookup table as a base to forward

packets to its destination.

Fig. 4 - Physical and virtual APs

By integrating wireless LAN virtualization

techniques into the hypervisor, the wireless LAN

interface can be shared among several VMs. To each

VM one or more virtual wireless interfaces can be

assigned. As shown in Fig. 5, VIFs are configured to

operate in one of the wireless operating modes,

specifically the AP mode, and then can be assigned

to various virtual networking components.

The main goal of this approach is to combine

wireless network functionality into a common

virtualized environment and to achieve performance

levels comparable to the native hardware wireless

LAN. A similar approach named virtual WiFi [3]

has been taken to provide wireless LAN client

functionality inside VMs. However, virtual WiFi

approach is intended to support mobile client

environments where the VM runs on the client

device and has to be aware of the wireless interface

to establish its own wireless connection.

The Virtual WLAN approach is suitable for

virtualizing wireless LAN infrastructures, where

multiple separate wireless LANs can be deployed on

a shared physical infrastructures with different

security mechanisms such as WPA and IEEE

802.11i. Since each virtual wireless LAN is logically

separated, wireless LAN providers may use virtual

WLANs to offer multiple services on the same

physical infrastructure. Alternatively, virtual

WLANs can be shared by multiple providers

allowing each provider to offer separate services for

their subscribers [1].

Fig. 5 - Virtual wireless LAN approach

 This approach is based on the Atheros WLAN

chipset which supports concurrent wireless

connections sharing the same PHY layer of the

wireless LAN device. This capability in wireless

LAN devices is also referred to as multi-SSIDs,

where each SSID is equivalent to a VLAN on a

wired network. We extend multi-SSIDs capability to

operate in the virtualization environments, where

each virtual WLAN can have its own addressing,

forwarding, routing, and security mechanism.

To emulate a physical AP, it is necessary to

provide the emulation at different layers such as

layer 2 (MAC), layer 3 (IP), and above. At the MAC

layer, the behavior of a physical AP is being

emulated by allocating a distinct MAC address and

SSID to each virtual AP. At the IP layer, it is

emulated by allocating a distinct IP address and

potentially a Fully Qualified Domain Name (FQDN)

to each virtual AP. In higher layers, the emulation

can be carried out by providing each virtual AP with

a unique authentication and accounting

configuration such as (a shared key, or EAP methods

with RADIUS authentication), or SNMP

communities.

 In our approach, a virtual wireless AP or router

is constructed by configuring the VIF to operate in

AP mode. This sets the main functionality of the

wireless AP such as IEEE 802.11 operation mode

and SSID. Once configured, the wireless interface is

attached to a virtual switch to enable MAC

forwarding similar to a physical AP. Then, the

virtual AP interface is connected to a virtual router,

in the same way as the virtual Ethernet interface, to

enable IP forwarding and routing.

5. IMPLEMENTAION

The multi-SSID capability given by the Atheros

chipset allows implementing multiple IEEE 802.11

networks on a single physical wireless card with

Linux (Linux kernel version 2.6.33 and higher),

since it includes a wireless driver supporting

multiple VIF configurations.

The wireless driver for Atheros WLAN devices

was initially developed by the madwifi project, and

then became part of the Linux kernel. The

implementation model of Linux kernel WLAN

driver is currently based on SoftMAC wireless

devices, where most of the MAC layer functionality

is managed by the driver. For the time being, Linux

kernel supports all wireless modes with PCI/PCI-

Express Atheros WLAN devices only [26].

In order to implement our approach, we used a

conventional PC with a wireless LAN card based on

the Atheros IEEE 802.11n chipset. It had an Intel

Core 2 processor with VT support, Gigabit Ethernet

interface and 3 GB RAM. Ubuntu Linux has been

chosen to host the virtualization environment for

virtual WLAN approach. We used KVM as backend

for virtualization and libvirt as frontend for

managing VMs. With libvirt, there come two

management tools: virt-manager as graphical user

interface (GUI) and virtsh as command line interface

(CLI).

The virtual wireless interfaces have been created

using a CLI configuration utility in Linux named

“iw”. Once created, the interfaces have been

configured to function as virtual AP or virtual STA

interfaces. It is essential for all VIFs to have a

unique MAC address, which can be assigned with

“ifconfig hw” command or “macchanger” utility.

A virtual AP functionality has been implemented

using the hostapd daemon or background service.

hostapd is an open source software for controlling

wireless LAN authentication and association. It

implements IEEE 802.11 AP management and

provide support for several security mechanisms

such as WPA, IEEE 802.11i, and IEEE 802.1X [27].

The virtual AP interface has been connected to a

VDE switch to enable MAC forwarding similar to a

physical AP.

For testing our approach, three virtual wireless

routers have been hosted on the PC with a shared

Internet connection. We created three virtual APs in

IEEE 802.11g operation mode, and three virtual

routers running Vyatta OS. Each virtual router had

two virtual Ethernet interfaces. One of them was

connected to the virtual AP interface and the other to

the physical Ethernet interface using the Linux

interface bridging feature. Each virtual router acted

as a DHCP server and DNS forwarder for the virtual

wireless LAN and each virtual AP broadcasted

different SSIDs to distinguish the wireless networks.

NAT functionality was also added to the virtual

routers to maintain public IP addresses and to

enhance wireless network security. Using these

virtual routers, different wireless LAN clients could

access the Internet with different wireless LAN

security mechanisms.

6. PERFORMANCE AND RESULTS

We have conducted some tests to understand the

impact of the virtual software layer on wireless

LANs. The objective of the tests was to compare and

quantify the performance of both conventional and

virtualized wireless networks. Testing WLAN

performance primarily included two test metrics:

throughput and response time. These performance

metrics were used to evaluate the applicability of our

approach for WLAN infrastructure virtualization

since the virtual networks had to handle the same

kind of traffic as conventional networks.

The throughput of WLAN is defined as the speed

with which a user can send and receive data between

the client and the AP. Throughput varies across the

WLAN’s coverage area. For this reason, we placed

the test machines at close range to operate on the

maximum available channel bandwidth.

Theoretically, the maximum TCP rate of 802.11g

network is 24.4 Mbps and the maximum UDP rate is

30.5 Mbps. The UDP throughput is higher than TCP

throughput because there is less protocol overhead

associated with UDP. Therefore, TCP throughput is

the most relevant metric in our performance

measurements.

To measure the throughput, we used IPerf and

JPerf as the graphical interface. IPerf tool was used

to measure TCP and UDP throughput in two

directions: uplink direction (from the client to the

virtual AP) and downlink direction (from the virtual

AP to the client). To measure response times or

latencies, we used ping. Ping is used to measure the

round-trip time between the client and the virtual

AP. In our test setup, IPerf was installed on two

machines; the machine which hosts the virtual

wireless routers functioned as IPerf server and the

wireless client machine as IPerf client. IPerf was

configured on the wireless client to run tests for 60

seconds in both directions and provided values in

Mbps.

We performed the same test in both native and

virtual environments. In the native hardware

environment, the tests were performed between a

remote client and host machine running three virtual

APs without virtualization. In the virtual

environment, the tests are performed between a

remote client and a VM directly attached to the

virtual routers. In this case, the wireless traffic

passing through the virtual routers.

Fig. 6 depicts the throughput test results where

all throughput results have been averaged over three

measurements. The average downlink/uplink TCP

throughput is 21.8/18.6 Mbps in the native hardware

environment and 21.4/18.2 Mbps in a virtual

environment. Latency test results show that the

average round-trip time in native hardware

environment is 1.1 msec and 2.1 msec in the virtual

case. This latency overhead comes from the

virtualization layer. The results show that our

proposed solution achieves performance metrics

comparable to the native hardware environment.

Fig. 6 - Thrughput test results

7. CONCLUSION

In this paper, we introduced a virtual networking

infrastructure using different virtualization

techniques. Also, we proposed a viable approach to

realize virtual WLANs by combining wireless LAN

virtualization technique with open source

virtualization platform.

Our approach adds wireless LAN functionally to

virtualization environments. Summarizing some of

the benefits, we can conclude that our proposed

solution:

 Enables virtualized wireless LAN architectures.

 Builds wired and wireless networks without

deploying physical infrastructure.

 Adds the wireless LAN management and control

functions to virtualization environments.

For the future, it is planned to investigate

performance measurement and optimization with the

Xen open source hypervisor. Also, we will design a

platform for virtual WLAN approach with different

security infrastructures.

8. REFERENCES

[1] B. Aboba. Virtual access points, 2003.

http://aboba.drizzlehosting.com/IEEE/11-04-

0238-00-0wng-definition-virtual-access-

point.doc.

[2] H. Coskun, I. Schieferdecker, and Y. Al-

Hazmi. Virtual wlan: Going beyond virtual

access points. Electronic Communications of

the EASST, 17, 2009.

[3] Lei Xia et al. Virtual wifi: Bring virtualization

from wired to wireless. ACM

SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments (VEE),

2011.

[4] J. Lee and Y. Moon. Research on virtual

network for virtual mobile network. Second

International Conference on Computer and

Network Technology (ICCNT), pp. 98-101,

2010.

[5] J. Sahoo, S. Mohapatra, and R. Lath.

Virtualization: A survey on concepts,

taxonomy and associated security issues.

Second International Conference on Computer

and Network Technology (ICCNT), pp. 222-

226, 2010.

[6] P. Barham et al. Xen and the art of

virtualization. ACM Symposium on Operating

Systems Principles (OSSP), pp. 164-177, 2003.

[7] VMware. Understanding Full Virtualization,

Paravirtualization, and Hardware Assist, 2007.

http://www.vmware.com/files/pdf/VMware_pa

ravirtualization.pdf.

[8] A. Kivity. Kvm: The linux virtual machine

monitor. Ottawa Linux Symposium (OLS), pp.

225-230, 2007.

[9] I. Habib. Virtualization with kvm. Linux

Journal, 2008(166), 2008.

http://www.linuxjournal.com/article/9764.

[10] T. Abels, P. Dhawan, and B. Chandrasekaran.

An overview of xen virtualization.

http://www.dell.com/downloads/global/power/

ps3q05-20050191-Abels.pdf.

[11] B. Pfaff et al., Extending networking into the

virtualization layer. 8th ACM Workshop on Hot

Topics in Networks (HotNets-VIII), 2009.

[12] VMware. VMware Virtual Networking

Concepts, 2007.

http://www.vmware.com/files/pdf/virtual_netw

orking_concepts.pdf.

[13] VMware. VMware vNetwork Distributed

Switch.

http://www.vmware.com/files/pdf/VMware-

vNetwork-Distributed-Switch-DS-EN.pdf.

[14] R. Davoli. Vde: Virtual distributed ethernet.

First International Conference on

TRIDENTCOM, 2005.

[15] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S.

Crosby. Virtual switching in an era of advanced

edges. 2nd Workshop on Data Center -

Converged and Virtual Ethernet Switching

(DC-CAVES), 2010.

[16] Quagga. Quagga: A routing software package

for TCP/IP networks.

http://www.quagga.net/docs/quagga.pdf.

[17] Vyatta Website, http://www.vyatta.org.
[18] J. Renato et al. Bridging the gap between

software and hardware techniques for i/o

virtualization. USENIX Annual Technical

Conference, 2008.

[19] M. Anwer and N. Feamster. Building a fast

virtualized data plane with programmable

hardware. ACM SIGCOMM Workshop on

Virtualized Infastructure Systems and

Architectures, 2009.

[20] S. Tripathi, N. Droux, and T. Srinivasan.

Crossbow: From hardware virtualized nics to

virtualized networks. ACM SIGCOMM

Workshop on Virtualized Infastructure Systems

and Architectures (VISA), 2009.

[21] R. Chandra and P. Bahl. Multinet: Connecting

to multiple ieee 802.11 networks using a single

wireless card. IEEE International Conference

on Computer Communications (INFOCOM),

2004.

[22] C. Chereddi, P. Kyasanur, and N. H. Vaidya.

Net-x: A multichannel multi-interface wireless

mesh implementation. ACM SIGMOBILE

Mobile Computing and Communications

Review, pp. 84-95, 2007.

[23] A. Sharma and E. Belding. Freemac:

Framework for multi-channel mac development

on 802.11 hardware. ACM workshop on

Programmable Routers for Extensible Services

of Tomorrow (PRESTO), 2008.

[24] Sung-Won Ahn and Chuck Yoo. Network

interface virtualization in wireless

communication for multi-streaming service.

IEEE 15th International Symposium on

Consumer Electronics (ISCE), 2011.

[25] Y. Al-Hazmi and H. de Meer. Virtualization of

802.11 interfaces for wireless mesh networks.

18th International Conference on Wireless On-

Demand Network System and Services

(WONS), 2011.

[26] Linux Wireless Website.

http://linuxwireless.org.

[27] hostapd Website.

http://hostap.epitest.fi/hostapd.

http://aboba.drizzlehosting.com/IEEE/11-04-0238-00-0wng-definition-virtual-access-point.doc
http://aboba.drizzlehosting.com/IEEE/11-04-0238-00-0wng-definition-virtual-access-point.doc
http://aboba.drizzlehosting.com/IEEE/11-04-0238-00-0wng-definition-virtual-access-point.doc
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.linuxjournal.com/article/9764
http://www.dell.com/downloads/global/power/ps3q05-20050191-Abels.pdf
http://www.dell.com/downloads/global/power/ps3q05-20050191-Abels.pdf
http://www.vmware.com/files/pdf/virtual_networking_concepts.pdf
http://www.vmware.com/files/pdf/virtual_networking_concepts.pdf
http://www.vmware.com/files/pdf/VMware-vNetwork-Distributed-Switch-DS-EN.pdf
http://www.vmware.com/files/pdf/VMware-vNetwork-Distributed-Switch-DS-EN.pdf
http://www.quagga.net/docs/quagga.pdf
http://www.vyatta.org/
http://linuxwireless.org/
http://hostap.epitest.fi/hostapd

Ghannam Aljabari, is a
computer engineer in the field
of networking and security who
used to work as a Network and
System Administrator in the
Computer Center at Palestine
Polytechnics University (PPU).
He holds a BSc in Computer
Systems Engineering from
PPU and pursuing his master

degree in Informatics at PPU in Hebron, Palestine.
His research interests include virtualization,
distributed systems and network security.

Prof. Dr. Evren Eren,
graduated from the University
of Bremen as an Electronics
Engineer (Diplom Ingenieur) in
1988 and started at Krupp
Atlas Elektronik, working within
the marine division as a
Software Engineer. In 1992 he
changed to the Bremen
Institute for Industrial
Technology and Applied Work

Science (BIBA), where he worked as a research
scientist in EU funded projects. 1998 he obtained his
PhD degree and moved to DETECON as Senior
Consultant. Since 1999 he is professor at the
University of Applied Sciences in Dortmund. His
working and research areas encompass IT-security
and networks.

