
Virtualization of IT Infrastructure for Small and
Medium Businesses

Ghannam Aljabari
Palestine Polytechnic University, Hebron, Palestine, Email: galjabari@ppu.edu

Abstract—Small and medium businesses (SMBs) are adopting
virtualization to improve server utilization and consolidation.
However, virtualization can also be used to create a virtualized
environment for the whole IT infrastructure. This paper presents
a review of the various virtualization techniques and open source
implementations. These techniques enable SMBs of all sizes to
create a virualized environment for their IT systems and their
own infrastructure. In this context, SMBs can move forward with
virtualization beyond just servers and also virtualize the entire
network infrastructure that were traditionally hardware bound.
As a result, SMBs can reduce their IT budgets and the time spent
on routine IT administration tasks.

Index Terms—virtualization; hypervisor; virtual infrastruc-
ture; virtual network; virtual storage; virtual WLAN; virtual
data center

I. INTRODUCTION

Virtualization is quickly becoming the platform of choice
for users and businesses that want to reduce power and
hardware cost and be able to increase resource sharing and
utilization. Today, system virtualization is very popular for
servers and desktops. With system virtualization, several vir-
tual machines (VMs) can run simultaneously on a commodity
hardware.

With the adoption of system virtualization, a new layer of
network virtualization is emerging that provides inter- and
intra- VM connectivity and has many of the same functionality
provided by the physical networking hardware. This new layer
also provides many of the features that are not available
in physical networks such as software flexibility and live
migration which provides the ability to move a running VM
between physical machines with no interruption to service. In
addition, multiple virtual networks can be constructed within a
single physical machine or across multiple physical machines.
However, the way of deploying and managing virtual networks
is different from physical networks.

The network virtualization layer primarily consists of virtual
interfaces, used by individual VMs, and virtual switches,
which connect the VMs to each other. System virtualization
can also be used to create virtual routers, virtual firewalls, and
other virtual appliances for Internet connectivity. As a result,
virtualization provides an integrated software environments
to emulate the entire network infrastructure for production
deployment, or development and testing purposes, i.e., vir-
tualization allows the testing of different IT systems prior to
production, which reduces real risks of failure.

By means of virtualization, small and medium businesses
(SMBs) that have already implemented system virtualization

can also virtualize the entire network infrastructure that were
traditionally hardware bound. SMBs that have not yet applied
virtualization to their IT systems and network infrastructure
can also reduce the IT budget and the downtime, so it can
significantly improve SMBs’ availability and business conti-
nuity.

This paper shows how open source virtualization techniques
that are available today can be used to create a virtualized
environment for the whole IT infrastructure. The virtual infras-
tructure environment is designed for SMBs to provide several
different IT services in parallel and on the same hardware
infrastructure, mainly to reduce costs and increase utilization.

II. SYSTEM VIRTUALIZATION

System virtualization enables multiple VMs to run concur-
rently on the same physical machine with different operating
systems (OSs) and applications [1]–[3]. Thus making the
OSs and applications unaware of the underlying hardware,
yet viewing computing resources as shared resource pools
available via virtualization. The term guest is usually used to
refer to the VM while the host is used to refer to the hosting
environment.

There are several techniques to system virutalization and
several software implementations, both open source and com-
mercial. However, open source solutions provide free alter-
natives for commercial virtualization software like VMware
products and Microsoft Hyper-V. Virtualization software ab-
stracts the underlying hardware by creating VMs, which rep-
resent virtualized resources such as CPUs, physical memory,
network interfaces, and I/O devices [1], [4]. The virtualization
software is known as a Virtual Machine Monitor (VMM) or
hypervisor [1].

There are two models for the hypervisor, hosted and native.
In the hosted model, a hypervisor runs as an application
on top of an OS and supports a broad range of hardware
configurations. In contrast, a native (bare-metal) hypervisor
runs directly on the hardware to control the hardware and to
manage guest OSs. Since it has direct access to the hardware
resources rather than going through an OS, a bare-metal
hypervisor is more efficient than a hosted model and delivers
greater scalability, robustness and performance [3].

A key challenge for system virtualization is the handling
of privileged instructions to virtualize the CPU on x86 ar-
chitecture [3]. Privileged instructions include all those that
change the allocation of the shared resources such as halt the
machine, set the timer, set the program counter, and I/O related



Fig. 1. Full virtualization techniques

instructions. The x86 architecture offers four levels of privilege
known as rings, numbered from 0 to 3. While applications
typically run in Ring 3 (user mode), the operating system
needs to have direct access to hardware and must execute its
privileged instructions in Ring 0 (kernel mode). In user mode,
only non-privileged instructions can be executed. However, if
a privileged instruction is executed in user mode, an interrupt
is generated and control is passed to an interrupt handling
routine, which is part of the OS [5].

Today, two common alternative approaches exist to resolve
this challenge:

A. Full Virtualization

In this approach, VMs and guest OSs run on top of virtual
hardware provided by the VMM. However, the VMM has to
provide the VM with an image of an entire system, including
virtual BIOS, virtual memory, and virtual devices to allow the
guest OS to run without modification. As a result, the guest
OS or application is not aware of the virtual environment [1],
[3].

The main advantage of full virtualization approach is that it
supports any platform and also provides a complete isolation
of different applications, which helps make this approach
highly secure. However, this approach has poor performance
in trying to emulate a complete set of hardware in software [1],
[3].

Virtualbox [6], an open source virtualization software, relies
on a technique called binary translation to provide a fully vir-
tualized machine. The binary translation technique, as shown
in Fig. 1, allows the VMM to run in Ring 0 for isolation
and performance, while moving the guest OS to a user level
ring with greater privilege than applications in Ring 3 but less
privilege than the VMM in Ring 0. The VMM translates all
guest OS instructions in the memory and caches the results for
future use, while user level instructions are executed directly
on the CPU [3].

KVM [7], which stands for Kernel-based Virtual Machine,
is a bare-metal hypervisor that takes advantage of hardware-
assist features on x86 architecture such as Intel VT and
AMD-V to improve the performance of guest OSs. The first
generation of hardware assist features was added to processors
in 2006, so that KVM hypervisor supports only newer x86
hardware systems [8].

Using KVM, several fully VMs can be created and operated
in Linux environments, since KVM adds VMM capabilities
to the Linux kernel. By adding virtualization support to
Linux kernel, the virtual environment can benefit from all the
ongoing work on the Linux kernel itself. Thus, researchers
can focus their efforts on optimizing Linux and KVM for
the VM environment not replicating OS functions within the
hypervisor [9].

When using hardware assist features, additional operating
modes, root and non-root mode, are added to CPU architecture
to virtualize privileged instructions. Both of these modes
support the four privilege rings just like the CPU architecture
without virtualization features. As depicted in Fig. 1, the
VMM operates in root mode and has access to real hardware,
while the guest OS operates in non-root mode and its access
to hardware is under complete control of the VMM [5], [8].

While these hardware assist features reduce the overhead for
virtualizing the CPU, an additional amount of resources are
expended by the hypervisor in handling memory virtualization.
Because the guest OS cannot directly access the physical host
memory, the hypervisor must provide a virtualized memory
implementation in which the hypervisor provides mapping
between the physical memory and the virtual memory. This
is often implemented using shadow page tables within the
hypervisor.

Intel developed the Extended Page Table (EPT) feature and
AMD developed the Rapid Virtualization Indexing (RVI) fea-
ture. These features provide a virtualized memory management
unit (MMU) in hardware that delivers significant performance
improvements compared to the software only implementation.
The memory virtualization features are incorporated into the
recent generation of Intel and AMD processors.

KVM officially became part of the mainline Linux kernel
as of version 2.6.20. KVM hypervisor consists of two main
components: a set of kernel modules providing the core virtu-
alization infrastructure such as CPU and memory management,
and a userspace program that provides device emulation for
I/O hardware devices, currently through a modified version of
QEMU (Quick Emulator). QEMU provides an emulated BIOS,
PCI bus, USB bus and a standard set of devices such as IDE
and SCSI disk controllers, network cards, etc.

KVM hypervisor can also be used with SPICE (Simple
Protocol for Independent Computing Environments) [10] to
provide a complete solution for virtual desktop infrastructure.
SPICE is an open source remote computing software, pro-
viding client access to remote VM display and devices (e.g.,
keyboard, mouse, audio). SPICE achieves a user experience
similar to an interaction with a local machine, while trying
to offload most of the intensive CPU and GPU tasks to the
client.

B. Paravirtualization

Paravirtualization or OS assisted virtulaiuzation presents
each VM with an abstraction of the hardware that is similar
but not identical to the underlying physical hardware [2]. This
approach requires modifications to the guest OSs that are



running on the VMs in order to replace privileged instructions
with hypercalls that communicate directly with the VMM. As
a result, the guest OSs are aware that they are executing on a
VM, allowing for near-native performance [1].

Xen [11] is an open source virtualization software based
on paravirtualization approach. Xen hypervisor runs directly
on hardware, allowing the host machine to run multiple
modified guest OSs concurrently. Modifying the guest OS is
not feasible for non-open source platforms such as Microsoft
Windows [4]. As a result, such OSs are not supported in
a paravirtualization environment. Recently, unmodified guest
OSs are also supported by Xen. In this mode, Xen provides
fully abstracted VM with hardware support (Intel VT and
AMD-V) referred to as hardware virtual machine (HVM).

Xen architecture includes three components: the VMM, the
privileged domain guest referred to as Domain0 or Dom0, and
unprivileged domain guests referred to as DomainU or DomU.
Dom0 has a unique privilege to access the hardware through
secure interfaces and to manage all aspects of DomU such as
starting, stopping and I/O requests [4]. For many years, Linux
has been used in Dom0 as a management OS on top of the
VMM and there was a Linux patch to transform the Linux
kernel into this Dom0. With the release of Linux kernel 3.0,
Xen hypervisor has become part of the mainline Linux kernel,
allowing domain guests to run without the need to apply the
patch to the kernel.

III. NETWORK VIRTUALIZATION

In recent years, network virtualization is moving toward
virtualized environments. By allowing multiple logical net-
works to co-exist on a shared physical infrastructure, net-
work virtualization provides flexibility and manageability [12].
Network virtualization often combines hardware and software
resources to deploy virtual networks for different topologies.
Over the years, the term virtual network has been used to
describe different types of network virtualization such as
VLAN (Virtual Local Area Network) and VPN (Virtual Private
Network). Today, this layer is providing connectivity to tens
of VMs per physical machine. However, networking in virtual
environments impose a set of challenges that are not available
in physical networks such as scaling and isolation [13].

Modern OSs provide the ability to create virtual network
interfaces that are supported entirely in software. From the
OS’s point of view, these interfaces behave similar to physical
network interfaces. However, the virtual interface does not
send the packets into a wire, but makes them available to
userspace programs running on the system. Virtual network in-
terfaces are commonly referred to as TAP and TUN interfaces
in Linux OS. TAP interfaces operate with Layer 2 packets,
while TUN interfaces can handle Layer 3 packets. VMs use
TAP interface to create a network bridge with the physical
network interface [14].

Full virtualization approach provides virtual network inter-
faces (NIC) by emulating legacy Ethernet devices for sim-
plicity. The virtual network interfaces appear to the VM as
virtualized hardware devices within the hypervisor. In this

Fig. 2. Virtual infrastructure components

technique, no modification is required for the guest OS.
However, there is a significant performance overhead due to
the context switching between VM and hypervisor. In the
paravirtualization approach, the para-virtualized driver is used
in the guest OS to achieve high I/O performance. But, this
method requires modifying the guest OS and having a special
driver to expose some details of the hardware [15].

Most of the virtualization approaches also provide some
form of virtual networking. For example, VMware has a
distributed switch for virtual machine networking [16]. Linux-
based virtualization platforms, including Xen and KVM, gen-
erally use network bridging or Virtual Distributed Ethernet
(VDE) switch. Network bridge acts like an Ethernet hub;
passing all traffic. While, VDE provides Layer 2 switching,
including spanning-tree protocol and VLAN support [17].

Open vSwitch [18] is an open source software switch
that provides connectivity between the VMs and the physi-
cal interfaces. It implements standard Layer 2 and Layer 3
switching with advanced features such as traffic monitoring
(e.g. NetFlow), port mirroring (e.g. SPAN), basic ACL (Access
Control List) and QoS (Quality of Service) policies. The Open
vSwitch consists of two components: a fast kernel module and
lightweight userspace program. The kernel module implements
the forwarding engine, while the userspace program imple-
ments forwarding logic and configuration interfaces. Open
vSwitch supports multiple Linux-based virtualization software,
including Xen and KVM [13].

Quagga [19] is an open source routing software that pro-
vides implementations of TCP/IP based routing protocols such
as OSPF, RIP, and BGP. In addition to traditional IPv4 routing
protocols, Quagga also supports IPv6 routing protocols. XORP
(Extensible Open Router Platform) [20] is another open
source routing software that support most of IPv4 and IPv6
routing protocols.

Vyatta software [21] incorporates open source routing and
security projects such as Quagga, IPtables, OpenVPN and
many others into a network OS for x86 hardware platforms.
Vyatta also can be delivered as VMs, providing routing, fire-
walling, VPN, and more for virtual environments. Thus, Vyatta
network OS complements virtual networking components by
delivering the virtual router, virtual firewall, and virtual VPN
gateway. A typical virtual infrastructure is shown in Fig. 2.



IV. STORAGE VIRTUALIZATION

Storage virtualization is the application of virtulization to
storage services or devices for the purpose of aggregating func-
tions or devices, hiding complexity, or adding new capabilities
to lower level storage devices. Today, several techniques
are employed to virtualize storage functions, which include
physical storage, RAID groups, logical unit numbers (LUNs),
storage zone, volume management, file systems and database
objects. Hence, storage virtualization provides an abstraction
layer for physical storage resources [22].

Most of the work in storage virtualization in recent years
has focused on block virtualization. With block virtualization,
several physical disks are presented as a single logical de-
vice [22]. There are two common methods to deliver virtual
storage pools with block virtualization or aggregation: host-
based and network-based.

Host-based method uses the volume manager included on
the host OS to deliver storage virtualiztion. The volume
manager provides a common way for managing and allocating
storage space on physical devices. Most OSs have a basic
volume manager such as LVM (Logical Volume Manager) in
Linux and LDM (Logical Disk Manager) in Windows. Third-
party volume manager products are also available such as
VMware VMFS. The advantage of this method that it con-
solidates storage resources made from heterogeneous storage
systems.

Network-based virtualization is the most common method
for delivering virtual storage. It depends on a storage area
network (SAN) to connect and manage storage systems using
Fibre Channel (FC) switch or iSCSI storage networking pro-
tocol. This method has the advantage of providing a single
management interface for all virtulized storage.

File system virtualization is another type of storage vir-
tualization, which is used to manage shared network access
to files in the file system. The simplest form of file system
virtualization is the concept of a network attached storage
(NAS) such as NFS and CIFS.

GlusterFS [23] is an open source cluster file system,
distributed across multiple systems and aggregates the total
storage into a single storage pool. A GlusterFS cluster exposes
this pool as an NFS or CIFS mount point. The benefit of this
model is that the underlying storage becomes fully virtualized
and can be distributed as widely as required. GlusterFS has
a client and a server component. The server stores the data,
and the client connect to servers with a custom protocol over
TCP/IP to access the data. The important feature of GlusterFS
is that it is a pure software solution, able to run on commodity
storage hardware.

V. WIRELESS LAN VIRTUALIZATION

Wireless LAN virtualization is considered as an alternative
approach for deploying multiple virtual wireless LANs with
different security mechanisms. Wireless LAN virtualization
enables several virtual WLAN interfaces to co-exist on a
common shared physical device. All virtual interfaces operate
concurrently without considering the physical nature of the

Fig. 3. Virtual data center

wireless LAN medium as well as physical management func-
tions. Each virtual interface abstracts a single wireless LAN
device and has its own wireless network and its own unique
MAC address [24].

A virtual WLAN interface can be configured to operate as
an access point (AP) and also as a station (STA) device. A
virtual AP is bound to a virtual interface and each virtual
AP independently keeps the configuration and service of
the wireless LAN. In this way, several virtual APs can be
configured on top of only one physical wireless LAN device.

In general, the virtual AP consists of two parts: control plane
and forwarding plane. The control plane is concerned with the
information that defines the functionality of the AP such as
the SSID (Service Set Identifier), and RF (Radio Frequency)
channel. While the forwarding plane defines the part of the
AP, that forwards packets to its destination [25].

hostapd [26] is an open source software for controlling
wireless LAN authentication and association. It implements
IEEE 802.11 AP management and provide support for several
security mechanisms such as WPA, IEEE 802.11i, and IEEE
802.1X. The current version of hostapd support Linux OS
and OpenBSD. The functionality of wireless AP or router
is emulated by integrating hostapd with a VDE switch to
enable MAC forwarding similar to physical AP, and then can
be assigned to a virtual router to enable IP forwarding and
routing [24].

VI. DATA CENTER VIRTUALIZATION

Virtual data center (VDS), as shown in Fig. 3, is a fully-
isolated virtual infrastructure environment where a user or a
group of users can create and manage VMs, virtual networks
and storage pools. In addition, a set of ACLs is defined to allow
different role management for shared infrastructure resources.

Virtualization of data center is the underlying technology
for cloud computing. Cloud computing provides on-demand
network access to a shared pool of computing resources like
servers, storage and networking. With cloud computing, IT
providers can deliver the computing infrastructure as a service



(IaaS). Thus, eliminating the need for cloud consumers to
deploy and manage the hardware infrastructure [27].

OpenNebula [28] is an open source management software
for data center virtualization. OpenNebula provides a virtual
infrastructure environments for IT enterprises to build their
own private cloud using their internal infrastructures. The
OpenNebula architecture includes several components special-
ized in different aspects of virtual infrastructure management
such as image and storage technologies, virtual networking,
and the underlying hypervisor for creating and managing VMs.
OpenNebula provides different interfaces (APIs) that can be
used with the underlying hypervisor, including KVM and Xen.
OpenNebula also supports a hybrid cloud model by using
cloud drivers to interface with public clouds or commercial
cloud providers [29].

OpenStack [30] is an open source platform for building
private and public IaaS clouds. It includes three core soft-
ware projects to orchestrate a cloud: OpenStack Compute,
OpenStack Object Storage, and OpenStack Image Service.
These projects are designed for large-scale deployments of
virtual machines, virtual netoworks, and virtual disk images.
Open Stack provides drivers and APIs required to interact with
underlying hypervisors, including KVM and Xen.

VII. CONCLUSION

In this paper, we present the various virtualization tech-
niques that let SMBs build their own IT infrastructure on
a commodity hardware without the need to modify their IT
systems or services. Also, we present open source solutions
and technologies that can be used as building blocks to create
and manage virtual IT infrastructure. The benefits of IT infras-
tructure virtualization for SMBs, make the implementation of
VITI (Virtualization of IT Infrastructure) project an excellent
platform for the development and testing of different virtual
IT services.

In the future, we plan to execute VITI project to study
the impact of virtualization on IT infrastructures and services
including email, file sharing and security systems. In addition,
the project provides a complete open source platform for
SMBs to build their own IT as a service. Using this platform
allows SMBs to focus on their businesses rather than managing
their IT infrastructure and services .

REFERENCES

[1] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on con-
cepts, taxonomy and associated security issues,” in Second International
Conference on Computer and Network Technology (ICCNT), 2010, pp.
222–226.

[2] P. Barham and et al., “Xen and the art of virtualization,” in ACM
Symposium on Operating Systems Principles (OSSP, 2003, pp. 164–177.

[3] “Understanding full virtualization, paravirtualization, and hardware
assist,” VMware, 2007, http://www.vmware.com/files/pdf/VMware
paravirtualization.pdf.

[4] T. Abels, P. Dhawan, and B. Chandrasekaran, “An overview
of xen virtualization,” http://www.dell.com/downloads/global/power/
ps3q05-20050191-Abels.pdf.

[5] D. Menasc, “Virtualization: Concepts, applications, and performance
modeling,” in International Computer Measurement Group (CMG) Con-
ference, 2005, pp. 407–414.

[6] https://www.virtualbox.org.

[7] http://www.linux-kvm.org.
[8] A. Kivity, “Kvm: The linux virtual machine monitor,” in Ottawa Linux

Symposium (OLS), 2007, pp. 225–230.
[9] I. Habib, “Virtualization with kvm,” in Linux Journal, vol. 2008, no.

166, 2008, http://www.linuxjournal.com/article/9764.
[10] http://spice-space.org.
[11] http://xen.org.
[12] N. M. N. K. Chowdhury and R. Boutaba, “Network virtualization: State

of the art and research challenges,” in IEEE Communications Magazine,
2009, pp. 20–26.

[13] B. Pfaff and et al., “Extending networking into the virtualization layer,”
in 8th ACM Workshop on Hot Topics in Networks (HotNets-VIII), 2009.

[14] H. Coskun, I. Schieferdecker, and Y. Al-Hazmi, “Virtual wlan: Going
beyond virtual access points,” in Electronic Communications of the
EASST, vol. 17, 2009.

[15] L. Xia and et al., “Virtual wifi: Bring virtualization from wired to
wireless,” 2011.

[16] “Vmware vnetwork distributed switch,” VMware, http://www.vmware.
com/files/pdf/VMware-vNetwork-Distributed-Switch-DS-EN.pdf.

[17] R. Davoli, “Vde: Virtual distributed ethernet,” in First International
Conference on TRIDENTCOM, 2005.

[18] http://openvswitch.org.
[19] http://www.quagga.net.
[20] http://www.xorp.org.
[21] http://www.vyatta.com.
[22] “Storage virtualization,” SNIA, http://www.snia.org/sites/default/files/

sniavirt.pdf.
[23] http://www.gluster.org.
[24] G. Aljabari and E. Eren, “Virtualization of wireless lan infrastructures,”

in The 6th IEEE International Conference on IDAACS, 2011.
[25] T. Hamaguchi, T. Komata, T. Nagai, and H. Shigeno, “A framework of

better deployment for wlan access point using virtualization technique,”
in IEEE 24th International Conference on Advanced Information Net-
working and Applications Workshops (WAINA), 2010, p. 968973.

[26] http://hostap.epitest.fi/hostapd.
[27] P. Mell and T. Grance, “The nist definition of cloud computing,”

National Institute of Standards and Technology, vol. 53, no. 6, 2009.
[28] http://opennebula.org.
[29] B. Sotomayor and et al., “Virtual infrastructure management in private

and hybrid clouds,” IEEE Internet Computing, vol. 13, no. 5, 2009.
[30] http://openstack.org.


